logo

טווח שאילתות LCM

בהינתן מערך arr[] של מספרים שלמים בגודל N ומערך של שאילתות Q query[] כאשר כל שאילתה היא מסוג [L R] המציינת את הטווח שבין אינדקס L לאינדקס R המשימה היא למצוא את LCM של כל המספרים של הטווח עבור כל השאילתות.

Java cast char למחרוזת

דוגמאות:  



קֶלֶט: arr[] = {5 7 5 2 10 12 11 17 14 1 44}
שאילתה[] = {{2 5} {5 10} {0 10}}
תְפוּקָה: 6015708 78540
הֶסבֵּר: בשאילתה הראשונה LCM(5 2 10 12) = 60 
בשאילתה השנייה LCM(12 11 17 14 1 44) = 15708
בשאילתה האחרונה LCM(5 7 5 2 10 12 11 17 14 1 44) = 78540

קֶלֶט: arr[] = {2 4 8 16} שאילתה[] = {{2 3} {0 1}}
תְפוּקָה: 16 4

גישה נאיבית: הגישה מבוססת על הרעיון המתמטי הבא:



מבחינה מתמטית  LCM(l r) = LCM(arr[l]  arr[l+1] . . . arr[r-1] arr[r]) ו

LCM(a b) = (a*b) / GCD(ab)

אז חצו את המערך עבור כל שאילתה וחשבו את התשובה באמצעות הנוסחה לעיל עבור LCM. 



מורכבות זמן: O(N * Q)
מרחב עזר: O(1)

RangeLCM שאילתות באמצעות   עץ פלח :

מכיוון שמספר השאילתות יכול להיות גדול, הפתרון הנאיבי יהיה לא מעשי. ניתן להפחית את הזמן הזה

אין פעולת עדכון בבעיה זו. אז אנחנו יכולים בהתחלה לבנות עץ מקטעים ולהשתמש בו כדי לענות על השאילתות בזמן לוגריתמי.

כל צומת בעץ צריך לאחסן את ערך LCM עבור אותו מקטע מסוים ונוכל להשתמש באותה נוסחה כמו לעיל כדי לשלב את המקטעים.

מה זה 10 מתוך 100

בצע את השלבים המוזכרים להלן כדי ליישם את הרעיון:

  • בנה עץ מקטע מהמערך הנתון.
  • עברו בין השאילתות. עבור כל שאילתה:
    • מצא את הטווח המסוים הזה בעץ הפלחים.
    • השתמש בנוסחה שהוזכרה לעיל כדי לשלב את הפלחים ולחשב את ה-LCM עבור טווח זה.
    • הדפס את התשובה עבור אותו קטע.

להלן יישום הגישה לעיל. 

C++
// LCM of given range queries using Segment Tree #include    using namespace std; #define MAX 1000 // allocate space for tree int tree[4 * MAX]; // declaring the array globally int arr[MAX]; // Function to return gcd of a and b int gcd(int a int b) {  if (a == 0)  return b;  return gcd(b % a a); } // utility function to find lcm int lcm(int a int b) { return a * b / gcd(a b); } // Function to build the segment tree // Node starts beginning index of current subtree. // start and end are indexes in arr[] which is global void build(int node int start int end) {  // If there is only one element in current subarray  if (start == end) {  tree[node] = arr[start];  return;  }  int mid = (start + end) / 2;  // build left and right segments  build(2 * node start mid);  build(2 * node + 1 mid + 1 end);  // build the parent  int left_lcm = tree[2 * node];  int right_lcm = tree[2 * node + 1];  tree[node] = lcm(left_lcm right_lcm); } // Function to make queries for array range )l r). // Node is index of root of current segment in segment // tree (Note that indexes in segment tree begin with 1 // for simplicity). // start and end are indexes of subarray covered by root // of current segment. int query(int node int start int end int l int r) {  // Completely outside the segment returning  // 1 will not affect the lcm;  if (end < l || start > r)  return 1;  // completely inside the segment  if (l <= start && r >= end)  return tree[node];  // partially inside  int mid = (start + end) / 2;  int left_lcm = query(2 * node start mid l r);  int right_lcm = query(2 * node + 1 mid + 1 end l r);  return lcm(left_lcm right_lcm); } // driver function to check the above program int main() {  // initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  cout << query(1 0 10 2 5) << endl;  // Print LCM of (5 10)  cout << query(1 0 10 5 10) << endl;  // Print LCM of (0 10)  cout << query(1 0 10 0 10) << endl;  return 0; } 
Java
// LCM of given range queries // using Segment Tree class GFG {  static final int MAX = 1000;  // allocate space for tree  static int tree[] = new int[4 * MAX];  // declaring the array globally  static int arr[] = new int[MAX];  // Function to return gcd of a and b  static int gcd(int a int b)  {  if (a == 0) {  return b;  }  return gcd(b % a a);  }  // utility function to find lcm  static int lcm(int a int b)  {  return a * b / gcd(a b);  }  // Function to build the segment tree  // Node starts beginning index  // of current subtree. start and end  // are indexes in arr[] which is global  static void build(int node int start int end)  {  // If there is only one element  // in current subarray  if (start == end) {  tree[node] = arr[start];  return;  }  int mid = (start + end) / 2;  // build left and right segments  build(2 * node start mid);  build(2 * node + 1 mid + 1 end);  // build the parent  int left_lcm = tree[2 * node];  int right_lcm = tree[2 * node + 1];  tree[node] = lcm(left_lcm right_lcm);  }  // Function to make queries for  // array range )l r). Node is index  // of root of current segment in segment  // tree (Note that indexes in segment  // tree begin with 1 for simplicity).  // start and end are indexes of subarray  // covered by root of current segment.  static int query(int node int start int end int l  int r)  {  // Completely outside the segment returning  // 1 will not affect the lcm;  if (end < l || start > r) {  return 1;  }  // completely inside the segment  if (l <= start && r >= end) {  return tree[node];  }  // partially inside  int mid = (start + end) / 2;  int left_lcm = query(2 * node start mid l r);  int right_lcm  = query(2 * node + 1 mid + 1 end l r);  return lcm(left_lcm right_lcm);  }  // Driver code  public static void main(String[] args)  {  // initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  System.out.println(query(1 0 10 2 5));  // Print LCM of (5 10)  System.out.println(query(1 0 10 5 10));  // Print LCM of (0 10)  System.out.println(query(1 0 10 0 10));  } } // This code is contributed by 29AjayKumar 
Python
# LCM of given range queries using Segment Tree MAX = 1000 # allocate space for tree tree = [0] * (4 * MAX) # declaring the array globally arr = [0] * MAX # Function to return gcd of a and b def gcd(a: int b: int): if a == 0: return b return gcd(b % a a) # utility function to find lcm def lcm(a: int b: int): return (a * b) // gcd(a b) # Function to build the segment tree # Node starts beginning index of current subtree. # start and end are indexes in arr[] which is global def build(node: int start: int end: int): # If there is only one element # in current subarray if start == end: tree[node] = arr[start] return mid = (start + end) // 2 # build left and right segments build(2 * node start mid) build(2 * node + 1 mid + 1 end) # build the parent left_lcm = tree[2 * node] right_lcm = tree[2 * node + 1] tree[node] = lcm(left_lcm right_lcm) # Function to make queries for array range )l r). # Node is index of root of current segment in segment # tree (Note that indexes in segment tree begin with 1 # for simplicity). # start and end are indexes of subarray covered by root # of current segment. def query(node: int start: int end: int l: int r: int): # Completely outside the segment # returning 1 will not affect the lcm; if end < l or start > r: return 1 # completely inside the segment if l <= start and r >= end: return tree[node] # partially inside mid = (start + end) // 2 left_lcm = query(2 * node start mid l r) right_lcm = query(2 * node + 1 mid + 1 end l r) return lcm(left_lcm right_lcm) # Driver Code if __name__ == '__main__': # initialize the array arr[0] = 5 arr[1] = 7 arr[2] = 5 arr[3] = 2 arr[4] = 10 arr[5] = 12 arr[6] = 11 arr[7] = 17 arr[8] = 14 arr[9] = 1 arr[10] = 44 # build the segment tree build(1 0 10) # Now we can answer each query efficiently # Print LCM of (2 5) print(query(1 0 10 2 5)) # Print LCM of (5 10) print(query(1 0 10 5 10)) # Print LCM of (0 10) print(query(1 0 10 0 10)) # This code is contributed by # sanjeev2552 
C#
// LCM of given range queries // using Segment Tree using System; using System.Collections.Generic; class GFG {  static readonly int MAX = 1000;  // allocate space for tree  static int[] tree = new int[4 * MAX];  // declaring the array globally  static int[] arr = new int[MAX];  // Function to return gcd of a and b  static int gcd(int a int b)  {  if (a == 0) {  return b;  }  return gcd(b % a a);  }  // utility function to find lcm  static int lcm(int a int b)  {  return a * b / gcd(a b);  }  // Function to build the segment tree  // Node starts beginning index  // of current subtree. start and end  // are indexes in []arr which is global  static void build(int node int start int end)  {  // If there is only one element  // in current subarray  if (start == end) {  tree[node] = arr[start];  return;  }  int mid = (start + end) / 2;  // build left and right segments  build(2 * node start mid);  build(2 * node + 1 mid + 1 end);  // build the parent  int left_lcm = tree[2 * node];  int right_lcm = tree[2 * node + 1];  tree[node] = lcm(left_lcm right_lcm);  }  // Function to make queries for  // array range )l r). Node is index  // of root of current segment in segment  // tree (Note that indexes in segment  // tree begin with 1 for simplicity).  // start and end are indexes of subarray  // covered by root of current segment.  static int query(int node int start int end int l  int r)  {  // Completely outside the segment  // returning 1 will not affect the lcm;  if (end < l || start > r) {  return 1;  }  // completely inside the segment  if (l <= start && r >= end) {  return tree[node];  }  // partially inside  int mid = (start + end) / 2;  int left_lcm = query(2 * node start mid l r);  int right_lcm  = query(2 * node + 1 mid + 1 end l r);  return lcm(left_lcm right_lcm);  }  // Driver code  public static void Main(String[] args)  {  // initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  Console.WriteLine(query(1 0 10 2 5));  // Print LCM of (5 10)  Console.WriteLine(query(1 0 10 5 10));  // Print LCM of (0 10)  Console.WriteLine(query(1 0 10 0 10));  } } // This code is contributed by Rajput-Ji 
JavaScript
<script> // LCM of given range queries using Segment Tree const MAX = 1000 // allocate space for tree var tree = new Array(4*MAX); // declaring the array globally var arr = new Array(MAX); // Function to return gcd of a and b function gcd(a b) {  if (a == 0)  return b;  return gcd(b%a a); } //utility function to find lcm function lcm(a b) {  return Math.floor(a*b/gcd(ab)); } // Function to build the segment tree // Node starts beginning index of current subtree. // start and end are indexes in arr[] which is global function build(node start end) {  // If there is only one element in current subarray  if (start==end)  {  tree[node] = arr[start];  return;  }  let mid = Math.floor((start+end)/2);  // build left and right segments  build(2*node start mid);  build(2*node+1 mid+1 end);  // build the parent  let left_lcm = tree[2*node];  let right_lcm = tree[2*node+1];  tree[node] = lcm(left_lcm right_lcm); } // Function to make queries for array range )l r). // Node is index of root of current segment in segment // tree (Note that indexes in segment tree begin with 1 // for simplicity). // start and end are indexes of subarray covered by root // of current segment. function query(node start end l r) {  // Completely outside the segment returning  // 1 will not affect the lcm;  if (end<l || start>r)  return 1;  // completely inside the segment  if (l<=start && r>=end)  return tree[node];  // partially inside  let mid = Math.floor((start+end)/2);  let left_lcm = query(2*node start mid l r);  let right_lcm = query(2*node+1 mid+1 end l r);  return lcm(left_lcm right_lcm); } //driver function to check the above program  //initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  document.write(query(1 0 10 2 5) +'  
'
); // Print LCM of (5 10) document.write(query(1 0 10 5 10) + '
'
); // Print LCM of (0 10) document.write(query(1 0 10 0 10) + '
'
); // This code is contributed by Manoj. </script>

תְפוּקָה
60 15708 78540

מורכבות זמן: O(Log N * Log n) כאשר N הוא מספר האלמנטים במערך. היומן השני מציין את הזמן הנדרש למציאת ה-LCM. המורכבות הפעם היא עבור כל שאילתה. מורכבות הזמן הכוללת היא O(N + Q*Log N*log n) זאת מכיוון שנדרש זמן O(N) כדי לבנות את העץ ולאחר מכן לענות על השאילתות.
מרחב עזר: O(N) כאשר N הוא מספר האלמנטים במערך. מקום זה נדרש לאחסון עץ הקטע.

נושא קשור: עץ פלח

גישה מס' 2: שימוש במתמטיקה

תחילה נגדיר פונקציית מסייעת lcm() כדי לחשב את הכפולה המשותפת הפחותה של שני מספרים. לאחר מכן עבור כל שאילתה אנו חוזרים על תת-מערך arr המוגדר על ידי טווח השאילתה ומחשבים את ה-LCM באמצעות הפונקציה lcm() . ערך LCM מאוחסן ברשימה המוחזרת כתוצאה הסופית.

עץ פלח

מחרוזת ל-int ב-java

גישה מס' 2: שימוש במתמטיקה

אַלגוֹרִיתְם

עץ פלח

גישה מס' 2: שימוש במתמטיקה

1. הגדר פונקציית מסייעת lcm(a b) לחישוב הכפולה המשותפת הקטנה ביותר של שני מספרים.
2. הגדר פונקציה range_lcm_queries(arr queries) שלוקחת מערך arr ורשימת שאילתות טווחי שאילתות כקלט.
3. צור תוצאות רשימה ריקה כדי לאחסן את ערכי LCM עבור כל שאילתה.
4. עבור כל שאילתה בשאילתות חלץ את המדדים השמאלי והימני l ו-r.
5. הגדר את lcm_val לערך של arr[l].
6. עבור כל אינדקס i בטווח l+1 עד r עדכן את lcm_val להיות ה-LCM של lcm_val ו-arr[i] באמצעות הפונקציה lcm() .
7. הוסף את lcm_val לרשימת התוצאות.
8. החזר את רשימת התוצאות.

עץ פלח

גישה מס' 2: שימוש במתמטיקה

C++

#include    #include  #include    using namespace std; int gcd(int a int b) {  if (b == 0)  return a;  return gcd(b a % b); } int lcm(int a int b) {  return a * b / gcd(a b); } vector<int> rangeLcmQueries(vector<int>& arr vector<pair<int int>>& queries) {  vector<int> results;  for (const auto& query : queries) {  int l = query.first;  int r = query.second;  int lcmVal = arr[l];  for (int i = l + 1; i <= r; i++) {  lcmVal = lcm(lcmVal arr[i]);  }  results.push_back(lcmVal);  }  return results; } int main() {  vector<int> arr = {5 7 5 2 10 12 11 17 14 1 44};  vector<pair<int int>> queries = {{2 5} {5 10} {0 10}};  vector<int> results = rangeLcmQueries(arr queries);  for (const auto& result : results) {  cout << result << ' ';  }  cout << endl;  return 0; } 
Java
/*package whatever //do not write package name here */ import java.util.ArrayList; import java.util.List; public class GFG {  public static int gcd(int a int b) {  if (b == 0)  return a;  return gcd(b a % b);  }  public static int lcm(int a int b) {  return a * b / gcd(a b);  }  public static List<Integer> rangeLcmQueries(List<Integer> arr List<int[]> queries) {  List<Integer> results = new ArrayList<>();  for (int[] query : queries) {  int l = query[0];  int r = query[1];  int lcmVal = arr.get(l);  for (int i = l + 1; i <= r; i++) {  lcmVal = lcm(lcmVal arr.get(i));  }  results.add(lcmVal);  }  return results;  }  public static void main(String[] args) {  List<Integer> arr = List.of(5 7 5 2 10 12 11 17 14 1 44);  List<int[]> queries = List.of(new int[]{2 5} new int[]{5 10} new int[]{0 10});  List<Integer> results = rangeLcmQueries(arr queries);  for (int result : results) {  System.out.print(result + ' ');  }  System.out.println();  } } 
Python
from math import gcd def lcm(a b): return a*b // gcd(a b) def range_lcm_queries(arr queries): results = [] for query in queries: l r = query lcm_val = arr[l] for i in range(l+1 r+1): lcm_val = lcm(lcm_val arr[i]) results.append(lcm_val) return results # example usage arr = [5 7 5 2 10 12 11 17 14 1 44] queries = [(2 5) (5 10) (0 10)] print(range_lcm_queries(arr queries)) # output: [60 15708 78540] 
C#
using System; using System.Collections.Generic; class GFG {  // Function to calculate the greatest common divisor (GCD)   // using Euclidean algorithm  static int GCD(int a int b)  {  if (b == 0)  return a;  return GCD(b a % b);  }  // Function to calculate the least common multiple (LCM)   // using GCD  static int LCM(int a int b)  {  return a * b / GCD(a b);  }  static List<int> RangeLcmQueries(List<int> arr List<Tuple<int int>> queries)  {  List<int> results = new List<int>();  foreach (var query in queries)  {  int l = query.Item1;  int r = query.Item2;  int lcmVal = arr[l];  for (int i = l + 1; i <= r; i++)  {  lcmVal = LCM(lcmVal arr[i]);  }  results.Add(lcmVal);  }  return results;  }  static void Main()  {  List<int> arr = new List<int> { 5 7 5 2 10 12 11 17 14 1 44 };  List<Tuple<int int>> queries = new List<Tuple<int int>> {  Tuple.Create(2 5)  Tuple.Create(5 10)  Tuple.Create(0 10)  };  List<int> results = RangeLcmQueries(arr queries);  foreach (var result in results)  {  Console.Write(result + ' ');  }  Console.WriteLine();  } } 
JavaScript
// JavaScript Program for the above approach // function to find out gcd function gcd(a b) {  if (b === 0) {  return a;  }  return gcd(b a % b); } // function to find out lcm function lcm(a b) {  return (a * b) / gcd(a b); } function rangeLcmQueries(arr queries) {  const results = [];  for (const query of queries) {  const l = query[0];  const r = query[1];  let lcmVal = arr[l];  for (let i = l + 1; i <= r; i++) {  lcmVal = lcm(lcmVal arr[i]);  }  results.push(lcmVal);  }  return results; } // Driver code to test above function const arr = [5 7 5 2 10 12 11 17 14 1 44]; const queries = [[2 5] [5 10] [0 10]]; const results = rangeLcmQueries(arr queries); for (const result of results) {  console.log(result + ' '); } console.log(); // THIS CODE IS CONTRIBUTED BY PIYUSH AGARWAL 

תְפוּקָה
[60 15708 78540]

מורכבות זמן: O(log(min(ab))). עבור כל טווח שאילתה אנו חוזרים דרך תת-מערך בגודל O(n) כאשר n הוא אורך arr. לכן מורכבות הזמן של הפונקציה הכוללת היא O(qn log(min(a_i))) כאשר q הוא מספר השאילתות ו-a_i הוא האלמנט ה-i של arr.
מורכבות החלל: O(1) מכיוון שאנו מאחסנים רק מספרים שלמים בודדים בכל פעם. השטח המשמש את arr הקלט והשאילתות אינו נחשב.