logo

פלינדרום על ידי הכנסה קדמית

נסה את זה ב-GfG Practice תווים-להוספה-בחזית-ל-Palindrome' title=

בהינתן מחרוזת s המורכבת מאותיות קטנות באנגלית בלבד מצא את מִינִימוּם מספר התווים שצריכים להיות הוסיף אל ה חֲזִית של s כדי להפוך אותו לפלינדרום.
פֶּתֶק: פלינדרום הוא מיתר שקורא אותו קדימה ואחורה.

דוגמאות:  

קֶלֶט : s = 'abc'
תְפוּקָה : 2
הֶסבֵּר : נוכל ליצור פלינדרום של מחרוזת למעלה בתור 'cbabc' על ידי הוספת 'b' ו-'c' בחזית.



קֶלֶט : s = 'aacecaaaa'
תְפוּקָה : 2
הֶסבֵּר : נוכל ליצור פלינדרום של מחרוזת למעלה בתור 'aaaacecaaaa' על ידי הוספת שני א' בקדמת המחרוזת.

תוכן עניינים

[גישה נאיבית] בדיקת כל הקידומות - O(n^2) זמן ו-O(1) רווח

הרעיון מבוסס על התצפית שעלינו למצוא את הקידומת הארוכה ביותר ממחרוזת נתונה שהיא גם פלינדרום. אז תווים קדמיים מינימליים שיתווספו ליצירת פלינדרום מיתר נתון יהיו התווים הנותרים.

' title= C++
#include    using namespace std; // function to check if the substring s[i...j] is a palindrome bool isPalindrome(string &s int i int j) {  while (i < j) {    // if characters at the ends are not equal   // it's not a palindrome  if (s[i] != s[j]) {  return false;  }  i++;  j--;  }  return true; } int minChar(string &s) {  int cnt = 0;  int i = s.size() - 1;    // iterate from the end of the string checking for the   // longestpalindrome starting from the beginning  while (i >= 0 && !isPalindrome(s 0 i)) {    i--;  cnt++;  }    return cnt; } int main() {  string s = 'aacecaaaa';  cout << minChar(s);  return 0; } 
C
#include  #include  #include  // function to check if the substring s[i...j] is a palindrome bool isPalindrome(char s[] int i int j) {  while (i < j) {    // if characters at the ends are not the same   // it's not a palindrome  if (s[i] != s[j]) {  return false;  }  i++;  j--;  }  return true; } int minChar(char s[]) {  int cnt = 0;  int i = strlen(s) - 1;    // iterate from the end of the string checking for the   // longest palindrome starting from the beginning  while (i >= 0 && !isPalindrome(s 0 i)) {    i--;  cnt++;  }    return cnt; } int main() {    char s[] = 'aacecaaaa';  printf('%d' minChar(s));  return 0; } 
Java
class GfG {  // function to check if the substring   // s[i...j] is a palindrome  static boolean isPalindrome(String s int i int j) {  while (i < j) {    // if characters at the ends are not the same   // it's not a palindrome  if (s.charAt(i) != s.charAt(j)) {  return false;  }  i++;  j--;  }  return true;  }  static int minChar(String s) {  int cnt = 0;  int i = s.length() - 1;    // iterate from the end of the string checking for the   // longest palindrome starting from the beginning  while (i >= 0 && !isPalindrome(s 0 i)) {  i--;  cnt++;  }    return cnt;  }  public static void main(String[] args) {  String s = 'aacecaaaa';  System.out.println(minChar(s));  } } 
Python
# function to check if the substring s[i...j] is a palindrome def isPalindrome(s i j): while i < j: # if characters at the ends are not the same  # it's not a palindrome if s[i] != s[j]: return False i += 1 j -= 1 return True def minChar(s): cnt = 0 i = len(s) - 1 # iterate from the end of the string checking for the  # longest palindrome starting from the beginning while i >= 0 and not isPalindrome(s 0 i): i -= 1 cnt += 1 return cnt if __name__ == '__main__': s = 'aacecaaaa' print(minChar(s)) 
C#
using System; class GfG {  // function to check if the substring s[i...j] is a palindrome  static bool isPalindrome(string s int i int j) {  while (i < j) {    // if characters at the ends are not the same   // it's not a palindrome  if (s[i] != s[j]) {  return false;  }  i++;  j--;  }  return true;  }  static int minChar(string s) {  int cnt = 0;  int i = s.Length - 1;    // iterate from the end of the string checking for the longest   // palindrome starting from the beginning  while (i >= 0 && !isPalindrome(s 0 i)) {  i--;  cnt++;  }    return cnt;  }  static void Main() {    string s = 'aacecaaaa';  Console.WriteLine(minChar(s));  } } 
JavaScript
// function to check if the substring s[i...j] is a palindrome function isPalindrome(s i j) {  while (i < j) {    // if characters at the ends are not the same   // it's not a palindrome  if (s[i] !== s[j]) {  return false;  }  i++;  j--;  }  return true; } function minChar(s) {  let cnt = 0;  let i = s.length - 1;    // iterate from the end of the string checking for the  // longest palindrome starting from the beginning  while (i >= 0 && !isPalindrome(s 0 i)) {    i--;  cnt++;  }    return cnt; } // Driver code let s = 'aacecaaaa'; console.log(minChar(s)); 

תְפוּקָה
2

[גישה צפויה 1] שימוש במערך lps של אלגוריתם KMP - O(n) זמן ו-O(n) Space

התצפית המרכזית היא שהקידומת הפלינדרומית הארוכה ביותר של מיתר הופכת לסיומת הפלינדרומית הארוכה ביותר בהיפוך.
בהינתן מחרוזת s = 'aacecaaaa' ההיפוך revS = 'aaaacecaa'. הקידומת הפלינדרומית הארוכה ביותר של s היא 'aacecaa'.

כדי למצוא זאת ביעילות אנו משתמשים במערך LPS מ- אלגוריתם KMP . אנו משרשרים את המחרוזת המקורית עם תו מיוחד והיפוך שלה: s + '$' + revS.
מערך ה-LPS עבור המחרוזת המשולבת הזו עוזר לזהות את הקידומת הארוכה ביותר של s התואמת לסיומת של revS המייצגת גם את הקידומת הפלינדרומית של s.

הערך האחרון של מערך LPS אומר לנו כמה תווים כבר יוצרים פלינדרום בהתחלה. לכן המספר המינימלי של תווים שיש להוסיף כדי להפוך את s לפלינדרום הוא s.length() - lps.back().

C++
#include    #include    #include  using namespace std; vector<int> computeLPSArray(string &pat) {  int n = pat.length();  vector<int> lps(n);  // lps[0] is always 0  lps[0] = 0;  int len = 0;  // loop calculates lps[i] for i = 1 to M-1  int i = 1;  while (i < n) {  // if the characters match increment len  // and set lps[i]  if (pat[i] == pat[len]) {  len++;  lps[i] = len;  i++;  }  // if there is a mismatch  else {  // if len is not zero update len to  // the last known prefix length  if (len != 0) {  len = lps[len - 1];  }  // no prefix matches set lps[i] to 0  else {  lps[i] = 0;  i++;  }  }  }  return lps; } // returns minimum character to be added at // front to make string palindrome int minChar(string &s) {  int n = s.length();  string rev = s;  reverse(rev.begin() rev.end());  // get concatenation of string special character  // and reverse string  s = s + '$' + rev;  // get LPS array of this concatenated string  vector<int> lps = computeLPSArray(s);  // by subtracting last entry of lps vector from  // string length we will get our result  return (n - lps.back()); } int main() {  string s = 'aacecaaaa';  cout << minChar(s);  return 0; } 
Java
import java.util.ArrayList; class GfG {  static int[] computeLPSArray(String pat) {  int n = pat.length();  int[] lps = new int[n];  // lps[0] is always 0  lps[0] = 0;  int len = 0;  // loop calculates lps[i] for i = 1 to n-1  int i = 1;  while (i < n) {  // if the characters match increment len  // and set lps[i]  if (pat.charAt(i) == pat.charAt(len)) {  len++;  lps[i] = len;  i++;  }  // if there is a mismatch  else {  // if len is not zero update len to  // the last known prefix length  if (len != 0) {  len = lps[len - 1];  }  // no prefix matches set lps[i] to 0  else {  lps[i] = 0;  i++;  }  }  }  return lps;  }  // returns minimum character to be added at  // front to make string palindrome  static int minChar(String s) {  int n = s.length();  String rev  = new StringBuilder(s).reverse().toString();  // get concatenation of string special character  // and reverse string  s = s + '$' + rev;  // get LPS array of this concatenated string  int[] lps = computeLPSArray(s);  // by subtracting last entry of lps array from  // string length we will get our result  return (n - lps[lps.length - 1]);  }  public static void main(String[] args) {  String s = 'aacecaaaa';  System.out.println(minChar(s));  } } 
Python
def computeLPSArray(pat): n = len(pat) lps = [0] * n # lps[0] is always 0 len_lps = 0 # loop calculates lps[i] for i = 1 to n-1 i = 1 while i < n: # if the characters match increment len # and set lps[i] if pat[i] == pat[len_lps]: len_lps += 1 lps[i] = len_lps i += 1 # if there is a mismatch else: # if len is not zero update len to  # the last known prefix length if len_lps != 0: len_lps = lps[len_lps - 1] # no prefix matches set lps[i] to 0 else: lps[i] = 0 i += 1 return lps # returns minimum character to be added at # front to make string palindrome def minChar(s): n = len(s) rev = s[::-1] # get concatenation of string special character # and reverse string s = s + '$' + rev # get LPS array of this concatenated string lps = computeLPSArray(s) # by subtracting last entry of lps array from # string length we will get our result return n - lps[-1] if __name__ == '__main__': s = 'aacecaaaa' print(minChar(s)) 
C#
using System; class GfG {  static int[] computeLPSArray(string pat) {  int n = pat.Length;  int[] lps = new int[n];  // lps[0] is always 0  lps[0] = 0;  int len = 0;  // loop calculates lps[i] for i = 1 to n-1  int i = 1;  while (i < n) {  // if the characters match increment len  // and set lps[i]  if (pat[i] == pat[len]) {  len++;  lps[i] = len;  i++;  }  // if there is a mismatch  else {  // if len is not zero update len to  // the last known prefix length  if (len != 0) {  len = lps[len - 1];  }  // no prefix matches set lps[i] to 0  else {  lps[i] = 0;  i++;  }  }  }  return lps;  }  // minimum character to be added at  // front to make string palindrome  static int minChar(string s) {  int n = s.Length;  char[] charArray = s.ToCharArray();  Array.Reverse(charArray);  string rev = new string(charArray);  // get concatenation of string special character  // and reverse string  s = s + '$' + rev;  // get LPS array of this concatenated string  int[] lps = computeLPSArray(s);  // by subtracting last entry of lps array from  // string length we will get our result  return n - lps[lps.Length - 1];  }  static void Main() {  string s = 'aacecaaaa';  Console.WriteLine(minChar(s));  } } 
JavaScript
function computeLPSArray(pat) {  let n = pat.length;  let lps = new Array(n).fill(0);  // lps[0] is always 0  let len = 0;  // loop calculates lps[i] for i = 1 to n-1  let i = 1;  while (i < n) {  // if the characters match increment len  // and set lps[i]  if (pat[i] === pat[len]) {  len++;  lps[i] = len;  i++;  }  // if there is a mismatch  else {  // if len is not zero update len to  // the last known prefix length  if (len !== 0) {  len = lps[len - 1];  }  // no prefix matches set lps[i] to 0  else {  lps[i] = 0;  i++;  }  }  }  return lps; } // returns minimum character to be added at // front to make string palindrome function minChar(s) {  let n = s.length;  let rev = s.split('').reverse().join('');  // get concatenation of string special character  // and reverse string  s = s + '$' + rev;  // get LPS array of this concatenated string  let lps = computeLPSArray(s);  // by subtracting last entry of lps array from  // string length we will get our result  return n - lps[lps.length - 1]; } // Driver Code let s = 'aacecaaaa'; console.log(minChar(s)); 

תְפוּקָה
2

[גישה צפויה 2] שימוש באלגוריתם של Manacher

הרעיון הוא להשתמש האלגוריתם של Manacher למצוא ביעילות את כל מיתרי המשנה הפלינדרום בזמן ליניארי.
אנו הופכים את המחרוזת על ידי הכנסת תווים מיוחדים (#) כדי לטפל בפלינדרום באורך זוגי ובאי זוגי באופן אחיד.
לאחר עיבוד מקדים אנו סורקים מקצה המחרוזת המקורית ומשתמשים במערך רדיוס הפלינדרום כדי לבדוק אם הקידומת s[0...i] היא פלינדרום. האינדקס הראשון מסוג i נותן לנו את הקידומת הפלינדרומית הארוכה ביותר ואנו מחזירים n - (i + 1) בתור התווים המינימליים שיש להוסיף.

אנקונדה נגד נחש פיתון
C++
#include    #include  #include  using namespace std; // manacher's algorithm for finding longest  // palindromic substrings class manacher { public:  // array to store palindrome lengths centered   // at each position  vector<int> p;  // modified string with separators and sentinels  string ms;   manacher(string &s) {  ms = '@';  for (char c : s) {  ms += '#' + string(1 c);  }  ms += '#$';  runManacher();  }  // core Manacher's algorithm  void runManacher() {  int n = ms.size();  p.assign(n 0);  int l = 0 r = 0;  for (int i = 1; i < n - 1; ++i) {  if (i < r)  p[i] = min(r - i p[r + l - i]);  // expand around the current center  while (ms[i + 1 + p[i]] == ms[i - 1 - p[i]])  ++p[i];  // update center if palindrome goes beyond  // current right boundary  if (i + p[i] > r) {  l = i - p[i];  r = i + p[i];  }  }  }  // returns the length of the longest palindrome  // centered at given position  int getLongest(int cen int odd) {  int pos = 2 * cen + 2 + !odd;  return p[pos];  }  // checks whether substring s[l...r] is a palindrome  bool check(int l int r) {  int len = r - l + 1;  int longest = getLongest((l + r) / 2 len % 2);  return len <= longest;  } }; // returns the minimum number of characters to add at the  // front to make the given string a palindrome int minChar(string &s) {  int n = s.size();  manacher m(s);  // scan from the end to find the longest   // palindromic prefix  for (int i = n - 1; i >= 0; --i) {  if (m.check(0 i))  return n - (i + 1);  }  return n - 1; } int main() {  string s = 'aacecaaaa';  cout << minChar(s) << endl;  return 0; } 
Java
class GfG {    // manacher's algorithm for finding longest   // palindromic substrings  static class manacher {  // array to store palindrome lengths centered   // at each position  int[] p;  // modified string with separators and sentinels  String ms;  manacher(String s) {  StringBuilder sb = new StringBuilder('@');  for (char c : s.toCharArray()) {  sb.append('#').append(c);  }  sb.append('#$');  ms = sb.toString();  runManacher();  }  // core Manacher's algorithm  void runManacher() {  int n = ms.length();  p = new int[n];  int l = 0 r = 0;  for (int i = 1; i < n - 1; ++i) {  if (i < r)  p[i] = Math.min(r - i p[r + l - i]);  // expand around the current center  while (ms.charAt(i + 1 + p[i]) == ms.charAt(i - 1 - p[i]))  p[i]++;  // update center if palindrome goes beyond   // current right boundary  if (i + p[i] > r) {  l = i - p[i];  r = i + p[i];  }  }  }  // returns the length of the longest palindrome   // centered at given position  int getLongest(int cen int odd) {  int pos = 2 * cen + 2 + (odd == 0 ? 1 : 0);  return p[pos];  }  // checks whether substring s[l...r] is a palindrome  boolean check(int l int r) {  int len = r - l + 1;  int longest = getLongest((l + r) / 2 len % 2);  return len <= longest;  }  }  // returns the minimum number of characters to add at the   // front to make the given string a palindrome  static int minChar(String s) {  int n = s.length();  manacher m = new manacher(s);  // scan from the end to find the longest   // palindromic prefix  for (int i = n - 1; i >= 0; --i) {  if (m.check(0 i))  return n - (i + 1);  }  return n - 1;  }  public static void main(String[] args) {  String s = 'aacecaaaa';  System.out.println(minChar(s));  } } 
Python
# manacher's algorithm for finding longest  # palindromic substrings class manacher: # array to store palindrome lengths centered  # at each position def __init__(self s): # modified string with separators and sentinels self.ms = '@' for c in s: self.ms += '#' + c self.ms += '#$' self.p = [] self.runManacher() # core Manacher's algorithm def runManacher(self): n = len(self.ms) self.p = [0] * n l = r = 0 for i in range(1 n - 1): if i < r: self.p[i] = min(r - i self.p[r + l - i]) # expand around the current center while self.ms[i + 1 + self.p[i]] == self.ms[i - 1 - self.p[i]]: self.p[i] += 1 # update center if palindrome goes beyond  # current right boundary if i + self.p[i] > r: l = i - self.p[i] r = i + self.p[i] # returns the length of the longest palindrome  # centered at given position def getLongest(self cen odd): pos = 2 * cen + 2 + (0 if odd else 1) return self.p[pos] # checks whether substring s[l...r] is a palindrome def check(self l r): length = r - l + 1 longest = self.getLongest((l + r) // 2 length % 2) return length <= longest # returns the minimum number of characters to add at the  # front to make the given string a palindrome def minChar(s): n = len(s) m = manacher(s) # scan from the end to find the longest  # palindromic prefix for i in range(n - 1 -1 -1): if m.check(0 i): return n - (i + 1) return n - 1 if __name__ == '__main__': s = 'aacecaaaa' print(minChar(s)) 
C#
using System; class GfG {    // manacher's algorithm for finding longest   // palindromic substrings  class manacher {  // array to store palindrome lengths centered   // at each position  public int[] p;  // modified string with separators and sentinels  public string ms;  public manacher(string s) {  ms = '@';  foreach (char c in s) {  ms += '#' + c;  }  ms += '#$';  runManacher();  }  // core Manacher's algorithm  void runManacher() {  int n = ms.Length;  p = new int[n];  int l = 0 r = 0;  for (int i = 1; i < n - 1; ++i) {  if (i < r)  p[i] = Math.Min(r - i p[r + l - i]);  // expand around the current center  while (ms[i + 1 + p[i]] == ms[i - 1 - p[i]])  p[i]++;  // update center if palindrome goes beyond   // current right boundary  if (i + p[i] > r) {  l = i - p[i];  r = i + p[i];  }  }  }  // returns the length of the longest palindrome   // centered at given position  public int getLongest(int cen int odd) {  int pos = 2 * cen + 2 + (odd == 0 ? 1 : 0);  return p[pos];  }  // checks whether substring s[l...r] is a palindrome  public bool check(int l int r) {  int len = r - l + 1;  int longest = getLongest((l + r) / 2 len % 2);  return len <= longest;  }  }  // returns the minimum number of characters to add at the   // front to make the given string a palindrome  static int minChar(string s) {  int n = s.Length;  manacher m = new manacher(s);  // scan from the end to find the longest   // palindromic prefix  for (int i = n - 1; i >= 0; --i) {  if (m.check(0 i))  return n - (i + 1);  }  return n - 1;  }  static void Main() {  string s = 'aacecaaaa';  Console.WriteLine(minChar(s));  } } 
JavaScript
// manacher's algorithm for finding longest  // palindromic substrings class manacher {    // array to store palindrome lengths centered   // at each position  constructor(s) {  // modified string with separators and sentinels  this.ms = '@';  for (let c of s) {  this.ms += '#' + c;  }  this.ms += '#$';  this.p = [];  this.runManacher();  }  // core Manacher's algorithm  runManacher() {  const n = this.ms.length;  this.p = new Array(n).fill(0);  let l = 0 r = 0;  for (let i = 1; i < n - 1; ++i) {  if (i < r)  this.p[i] = Math.min(r - i this.p[r + l - i]);  // expand around the current center  while (this.ms[i + 1 + this.p[i]] === this.ms[i - 1 - this.p[i]])  this.p[i]++;  // update center if palindrome goes beyond   // current right boundary  if (i + this.p[i] > r) {  l = i - this.p[i];  r = i + this.p[i];  }  }  }  // returns the length of the longest palindrome   // centered at given position  getLongest(cen odd) {  const pos = 2 * cen + 2 + (odd === 0 ? 1 : 0);  return this.p[pos];  }  // checks whether substring s[l...r] is a palindrome  check(l r) {  const len = r - l + 1;  const longest = this.getLongest(Math.floor((l + r) / 2) len % 2);  return len <= longest;  } } // returns the minimum number of characters to add at the  // front to make the given string a palindrome function minChar(s) {  const n = s.length;  const m = new manacher(s);  // scan from the end to find the longest   // palindromic prefix  for (let i = n - 1; i >= 0; --i) {  if (m.check(0 i))  return n - (i + 1);  }  return n - 1; } // Driver Code const s = 'aacecaaaa'; console.log(minChar(s)); 

תְפוּקָה
2 

מורכבות זמן: האלגוריתם של O(n) manacher פועל בזמן ליניארי על ידי הרחבת פלינדרומים בכל מרכז מבלי לבקר מחדש בתווים ולולאת בדיקת הקידומת מבצעת פעולות O(1) לכל תו על פני n תווים.
מרחב עזר: O(n) משמש עבור המחרוזת המשתנה ומערך אורך פלינדרום p[] אשר שניהם גדלים באופן ליניארי עם גודל הקלט.

צור חידון