#practiceLinkDiv { display: none !חשוב; }נתון מערך של n מספרים שלמים מובהקים חיוביים. הבעיה היא למצוא את הסכום הגדול ביותר של תת-מערך הולך וגדל במורכבות זמן O(n).
דוגמאות:
Input : arr[] = {2 1 4 7 3 6}Recommended Practice שועל חמדן נסה את זה!
Output : 12
Contiguous Increasing subarray {1 4 7} = 12
Input : arr[] = {38 7 8 10 12}
Output : 38
א פתרון פשוט הוא ל ליצור את כל מערכי המשנה ולחשב את הסכומים שלהם. לבסוף החזר את המשנה עם סכום מקסימלי. מורכבות הזמן של פתרון זה היא O(n2).
גדלי טקסט לטקס
א פתרון יעיל מבוסס על העובדה שכל המרכיבים הם חיוביים. אז אנו רואים את תת-מערכי ההגדלה הארוכים ביותר ומשווים את הסכומים שלהם. להגדלת מערכי המשנה אינם יכולים לחפוף ולכן מורכבות הזמן שלנו הופכת ל-O(n).
אַלגוֹרִיתְם:
Let arr be the array of size n
Let result be the required sum
int largestSum(arr n)
result = INT_MIN // Initialize result
i = 0
while i < n
// Find sum of longest increasing subarray
// starting with i
curr_sum = arr[i];
while i+1 < n && arr[i] < arr[i+1]
curr_sum += arr[i+1];
i++;
// If current sum is greater than current
// result.
if result < curr_sum
result = curr_sum;
i++;
return result
להלן היישום של האלגוריתם לעיל.
np.concatenateC++
// C++ implementation of largest sum // contiguous increasing subarray #include using namespace std; // Returns sum of longest // increasing subarray. int largestSum(int arr[] int n) { // Initialize result int result = INT_MIN; // Note that i is incremented // by inner loop also so overall // time complexity is O(n) for (int i = 0; i < n; i++) { // Find sum of longest // increasing subarray // starting from arr[i] int curr_sum = arr[i]; while (i + 1 < n && arr[i + 1] > arr[i]) { curr_sum += arr[i + 1]; i++; } // Update result if required if (curr_sum > result) result = curr_sum; } // required largest sum return result; } // Driver Code int main() { int arr[] = { 1 1 4 7 3 6 }; int n = sizeof(arr) / sizeof(arr[0]); cout << 'Largest sum = ' << largestSum(arr n); return 0; }
Java // Java implementation of largest sum // contiguous increasing subarray class GFG { // Returns sum of longest // increasing subarray. static int largestSum(int arr[] int n) { // Initialize result int result = -9999999; // Note that i is incremented // by inner loop also so overall // time complexity is O(n) for (int i = 0; i < n; i++) { // Find sum of longest // increasing subarray // starting from arr[i] int curr_sum = arr[i]; while (i + 1 < n && arr[i + 1] > arr[i]) { curr_sum += arr[i + 1]; i++; } // Update result if required if (curr_sum > result) result = curr_sum; } // required largest sum return result; } // Driver Code public static void main(String[] args) { int arr[] = { 1 1 4 7 3 6 }; int n = arr.length; System.out.println('Largest sum = ' + largestSum(arr n)); } }
Python3 # Python3 implementation of largest # sum contiguous increasing subarray # Returns sum of longest # increasing subarray. def largestSum(arr n): # Initialize result result = -2147483648 # Note that i is incremented # by inner loop also so overall # time complexity is O(n) for i in range(n): # Find sum of longest increasing # subarray starting from arr[i] curr_sum = arr[i] while (i + 1 < n and arr[i + 1] > arr[i]): curr_sum += arr[i + 1] i += 1 # Update result if required if (curr_sum > result): result = curr_sum # required largest sum return result # Driver Code arr = [1 1 4 7 3 6] n = len(arr) print('Largest sum = ' largestSum(arr n)) # This code is contributed by Anant Agarwal.
C# // C# implementation of largest sum // contiguous increasing subarray using System; class GFG { // Returns sum of longest // increasing subarray. static int largestSum(int[] arr int n) { // Initialize result int result = -9999999; // Note that i is incremented by // inner loop also so overall // time complexity is O(n) for (int i = 0; i < n; i++) { // Find sum of longest increasing // subarray starting from arr[i] int curr_sum = arr[i]; while (i + 1 < n && arr[i + 1] > arr[i]) { curr_sum += arr[i + 1]; i++; } // Update result if required if (curr_sum > result) result = curr_sum; } // required largest sum return result; } // Driver code public static void Main() { int[] arr = { 1 1 4 7 3 6 }; int n = arr.Length; Console.Write('Largest sum = ' + largestSum(arr n)); } } // This code is contributed // by Nitin Mittal.
JavaScript <script> // Javascript implementation of largest sum // contiguous increasing subarray // Returns sum of longest // increasing subarray. function largestSum(arr n) { // Initialize result var result = -1000000000; // Note that i is incremented // by inner loop also so overall // time complexity is O(n) for (var i = 0; i < n; i++) { // Find sum of longest // increasing subarray // starting from arr[i] var curr_sum = arr[i]; while (i + 1 < n && arr[i + 1] > arr[i]) { curr_sum += arr[i + 1]; i++; } // Update result if required if (curr_sum > result) result = curr_sum; } // required largest sum return result; } // Driver Code var arr = [1 1 4 7 3 6]; var n = arr.length; document.write( 'Largest sum = ' + largestSum(arr n)); // This code is contributed by itsok. </script>
PHP // PHP implementation of largest sum // contiguous increasing subarray // Returns sum of longest // increasing subarray. function largestSum($arr $n) { $INT_MIN = 0; // Initialize result $result = $INT_MIN; // Note that i is incremented // by inner loop also so overall // time complexity is O(n) for ($i = 0; $i < $n; $i++) { // Find sum of longest // increasing subarray // starting from arr[i] $curr_sum = $arr[$i]; while ($i + 1 < $n && $arr[$i + 1] > $arr[$i]) { $curr_sum += $arr[$i + 1]; $i++; } // Update result if required if ($curr_sum > $result) $result = $curr_sum; } // required largest sum return $result; } // Driver Code { $arr = array(1 1 4 7 3 6); $n = sizeof($arr) / sizeof($arr[0]); echo 'Largest sum = ' largestSum($arr $n); return 0; } // This code is contributed by nitin mittal. ?> תְפוּקָה
Largest sum = 12
מורכבות זמן: O(n)
הסכום הגדול ביותר במערך משנה הולך וגדל בשימוש רקורסיה :
אלגוריתם רקורסיבי לפתרון בעיה זו:
להלן האלגוריתם שלב אחר שלב של הבעיה:
- הפונקציה 'הסכום הגדול ביותר' לוקח מערך 'ארר' והגודל שלו הוא 'נ'.
- אִם 'n==1' ואז לחזור arr[0]th אֵלֵמֶנט.
- אִם 'n != 1' ואז קריאה רקורסיבית לפונקציה 'הסכום הגדול ביותר' כדי למצוא את הסכום הגדול ביותר של תת-המערך 'arr[0...n-1]' לא כולל האלמנט האחרון 'arr[n-1]' .
- על ידי איטרציה על המערך בסדר הפוך המתחיל באלמנט השני אחרון, חשב את סכום תת-המערך ההולך וגדל המסתיים ב- 'arr[n-1]' . אם אלמנט אחד קטן מהשני יש להוסיף אותו לסכום הנוכחי. אחרת הלולאה צריכה להישבר.
- לאחר מכן החזר את המקסימום של הסכום הגדול ביותר כלומר. ' return max(max_sum curr_sum);' .
הנה היישום של האלגוריתם לעיל:
C++#include using namespace std; // Recursive function to find the largest sum // of contiguous increasing subarray int largestSum(int arr[] int n) { // Base case if (n == 1) return arr[0]; // Recursive call to find the largest sum int max_sum = max(largestSum(arr n - 1) arr[n - 1]); // Compute the sum of the increasing subarray int curr_sum = arr[n - 1]; for (int i = n - 2; i >= 0; i--) { if (arr[i] < arr[i + 1]) curr_sum += arr[i]; else break; } // Return the maximum of the largest sum so far // and the sum of the current increasing subarray return max(max_sum curr_sum); } // Driver Code int main() { int arr[] = { 1 1 4 7 3 6 }; int n = sizeof(arr) / sizeof(arr[0]); cout << 'Largest sum = ' << largestSum(arr n); return 0; } // This code is contributed by Vaibhav Saroj.
C #include #include // Returns sum of longest increasing subarray int largestSum(int arr[] int n) { // Initialize result int result = INT_MIN; // Note that i is incremented // by inner loop also so overall // time complexity is O(n) for (int i = 0; i < n; i++) { // Find sum of longest // increasing subarray // starting from arr[i] int curr_sum = arr[i]; while (i + 1 < n && arr[i + 1] > arr[i]) { curr_sum += arr[i + 1]; i++; } // Update result if required if (curr_sum > result) result = curr_sum; } // required largest sum return result; } // Driver code int main() { int arr[] = { 1 1 4 7 3 6 }; int n = sizeof(arr) / sizeof(arr[0]); printf('Largest sum = %dn' largestSum(arr n)); return 0; } // This code is contributed by Vaibhav Saroj.
Java /*package whatever //do not write package name here */ import java.util.*; public class Main { // Recursive function to find the largest sum // of contiguous increasing subarray public static int largestSum(int arr[] int n) { // Base case if (n == 1) return arr[0]; // Recursive call to find the largest sum int max_sum = Math.max(largestSum(arr n - 1) arr[n - 1]); // Compute the sum of the increasing subarray int curr_sum = arr[n - 1]; for (int i = n - 2; i >= 0; i--) { if (arr[i] < arr[i + 1]) curr_sum += arr[i]; else break; } // Return the maximum of the largest sum so far // and the sum of the current increasing subarray return Math.max(max_sum curr_sum); } // Driver code public static void main(String[] args) { int arr[] = { 1 1 4 7 3 6 }; int n = arr.length; System.out.println('Largest sum = ' + largestSum(arr n)); } } // This code is contributed by Vaibhav Saroj.
Python def largestSum(arr n): # Base case if n == 1: return arr[0] # Recursive call to find the largest sum max_sum = max(largestSum(arr n-1) arr[n-1]) # Compute the sum of the increasing subarray curr_sum = arr[n-1] for i in range(n-2 -1 -1): if arr[i] < arr[i+1]: curr_sum += arr[i] else: break # Return the maximum of the largest sum so far # and the sum of the current increasing subarray return max(max_sum curr_sum) # Driver code arr = [1 1 4 7 3 6] n = len(arr) print('Largest sum =' largestSum(arr n)) # This code is contributed by Vaibhav Saroj.
C# // C# program for above approach using System; public static class GFG { // Recursive function to find the largest sum // of contiguous increasing subarray public static int largestSum(int[] arr int n) { // Base case if (n == 1) return arr[0]; // Recursive call to find the largest sum int max_sum = Math.Max(largestSum(arr n - 1) arr[n - 1]); // Compute the sum of the increasing subarray int curr_sum = arr[n - 1]; for (int i = n - 2; i >= 0; i--) { if (arr[i] < arr[i + 1]) curr_sum += arr[i]; else break; } // Return the maximum of the largest sum so far // and the sum of the current increasing subarray return Math.Max(max_sum curr_sum); } // Driver code public static void Main() { int[] arr = { 1 1 4 7 3 6 }; int n = arr.Length; Console.WriteLine('Largest sum = ' + largestSum(arr n)); } } // This code is contributed by Utkarsh Kumar
JavaScript function largestSum(arr n) { // Base case if (n == 1) return arr[0]; // Recursive call to find the largest sum let max_sum = Math.max(largestSum(arr n-1) arr[n-1]); // Compute the sum of the increasing subarray let curr_sum = arr[n-1]; for (let i = n-2; i >= 0; i--) { if (arr[i] < arr[i+1]) curr_sum += arr[i]; else break; } // Return the maximum of the largest sum so far // and the sum of the current increasing subarray return Math.max(max_sum curr_sum); } // Driver Code let arr = [1 1 4 7 3 6]; let n = arr.length; console.log('Largest sum = ' + largestSum(arr n));
PHP // Recursive function to find the largest sum // of contiguous increasing subarray function largestSum($arr $n) { // Base case if ($n == 1) return $arr[0]; // Recursive call to find the largest sum $max_sum = max(largestSum($arr $n-1) $arr[$n-1]); // Compute the sum of the increasing subarray $curr_sum = $arr[$n-1]; for ($i = $n-2; $i >= 0; $i--) { if ($arr[$i] < $arr[$i+1]) $curr_sum += $arr[$i]; else break; } // Return the maximum of the largest sum so far // and the sum of the current increasing subarray return max($max_sum $curr_sum); } // Driver Code $arr = array(1 1 4 7 3 6); $n = count($arr); echo 'Largest sum = ' . largestSum($arr $n); ?> תְפוּקָה
Largest sum = 12
מורכבות זמן: O(n^2).
מורכבות החלל: עַל).
הסכום הגדול ביותר מתת-מערך הולך וגדל תוך שימוש באלגוריתם של Kadane:-
כדי לקבל את תת-מערך הסכום הגדול ביותר, הגישה של Kadane משמשת אולם היא מניחה שהמערך מכיל ערכים חיוביים ושליליים כאחד. במקרה זה עלינו לשנות את האלגוריתם כך שיעבוד רק על תת-מערכים עולים רציפים.
להלן כיצד נוכל לשנות את האלגוריתם של Kadane כדי למצוא את תת-המערך הרציף והגדל של הסכום הגדול ביותר:
- אתחול שני משתנים: max_sum ו-curr_sum לאלמנט הראשון של המערך.
- עברו בלולאה דרך המערך החל מהאלמנט השני.
- אם האלמנט הנוכחי גדול מהאלמנט הקודם הוסף אותו ל-curr_sum. אחרת אפס curr_sum לאלמנט הנוכחי.
- אם curr_sum גדול מ-max_sum עדכן את max_sum.
- לאחר הלולאה max_sum יכיל את הסכום הגדול ביותר תת-מערך הולך וגדל.
#include using namespace std; int largest_sum_contiguous_increasing_subarray(int arr[] int n) { int max_sum = arr[0]; int curr_sum = arr[0]; for (int i = 1; i < n; i++) { if (arr[i] > arr[i-1]) { curr_sum += arr[i]; } else { curr_sum = arr[i]; } if (curr_sum > max_sum) { max_sum = curr_sum; } } return max_sum; } int main() { int arr[] = { 1 1 4 7 3 6 }; int n = sizeof(arr)/sizeof(arr[0]); cout << largest_sum_contiguous_increasing_subarray(arr n) << endl; // Output: 44 (1+2+3+5+7+8+9+10) return 0; }
Java public class Main { public static int largestSumContiguousIncreasingSubarray(int[] arr int n) { int maxSum = arr[0]; int currSum = arr[0]; for (int i = 1; i < n; i++) { if (arr[i] > arr[i-1]) { currSum += arr[i]; } else { currSum = arr[i]; } if (currSum > maxSum) { maxSum = currSum; } } return maxSum; } public static void main(String[] args) { int[] arr = { 1 1 4 7 3 6 }; int n = arr.length; System.out.println(largestSumContiguousIncreasingSubarray(arr n)); // Output: 44 (1+2+3+5+7+8+9+10) } }
Python3 def largest_sum_contiguous_increasing_subarray(arr n): max_sum = arr[0] curr_sum = arr[0] for i in range(1 n): if arr[i] > arr[i-1]: curr_sum += arr[i] else: curr_sum = arr[i] if curr_sum > max_sum: max_sum = curr_sum return max_sum arr = [1 1 4 7 3 6] n = len(arr) print(largest_sum_contiguous_increasing_subarray(arr n)) #output 12 (1+4+7)
C# using System; class GFG { // Function to find the largest sum of a contiguous // increasing subarray static int LargestSumContiguousIncreasingSubarray(int[] arr int n) { int maxSum = arr[0]; // Initialize the maximum sum // and current sum int currSum = arr[0]; for (int i = 1; i < n; i++) { if (arr[i] > arr[i - 1]) // Check if the current // element is greater than the // previous element { currSum += arr[i]; // If increasing add the // element to the current sum } else { currSum = arr[i]; // If not increasing start a // new increasing subarray // from the current element } if (currSum > maxSum) // Update the maximum sum if the // current sum is greater { maxSum = currSum; } } return maxSum; } static void Main() { int[] arr = { 1 1 4 7 3 6 }; int n = arr.Length; Console.WriteLine( LargestSumContiguousIncreasingSubarray(arr n)); } } // This code is contributed by akshitaguprzj3
JavaScript // Javascript code for above approach // Function to find the largest sum of a contiguous // increasing subarray function LargestSumContiguousIncreasingSubarray(arr n) { let maxSum = arr[0]; // Initialize the maximum sum // and current sum let currSum = arr[0]; for (let i = 1; i < n; i++) { if (arr[i] > arr[i - 1]) // Check if the current // element is greater than the // previous element { currSum += arr[i]; // If increasing add the // element to the current sum } else { currSum = arr[i]; // If not increasing start a // new increasing subarray // from the current element } if (currSum > maxSum) // Update the maximum sum if the // current sum is greater { maxSum = currSum; } } return maxSum; } let arr = [ 1 1 4 7 3 6 ]; let n = arr.length; console.log(LargestSumContiguousIncreasingSubarray(arr n)); // This code is contributed by Pushpesh Raj
תְפוּקָה
12
מורכבות זמן: O(n).
מורכבות החלל: O(1).
הוספת מחרוזת ב-javaצור חידון