צופן האפין הוא סוג של צופן החלפה חד-אלפביתי שבו כל אות באלפבית ממופה למקבילה המספרית שלה מוצפנת באמצעות פונקציה מתמטית פשוטה ומומרת חזרה לאות. הנוסחה שבה נעשה שימוש פירושה שכל אות מוצפנת לאות אחרת וחוזרת, כלומר הצופן הוא בעצם צופן החלפה סטנדרטי עם כלל שקובע לאיזו אות נכנסת.
כל התהליך מסתמך על עבודה modulo m (אורך האלפבית בשימוש). בצופן האפיני, האותיות של אלפבית בגודל m ממפות לראשונה למספרים השלמים בטווח 0 ... m-1.
ה'מפתח' של צופן Affine מורכב מ-2 מספרים שנכנה אותם a ו-b. הדיון הבא מניח את השימוש באלפבית בן 26 תווים (m = 26). יש לבחור את a להיות ראשוני יחסית ל-m (כלומר לא צריך להיות ל-a גורמים משותפים עם m).

הצפנה
הוא משתמש בחשבון מודולרי כדי להפוך את המספר השלם שכל אות טקסט רגיל מתאימה לו למספר שלם אחר המתאים לאות טקסט צופן. פונקציית ההצפנה עבור אות בודדת היא
E ( x ) = ( a x + b ) mod m modulus m: size of the alphabet a and b: key of the cipher. a must be chosen such that a and m are coprime.
פענוח
בפענוח הטקסט הצופן עלינו לבצע את הפונקציות ההפוכות (או ההפוכות) בטקסט הצופן כדי לאחזר את הטקסט הפשוט. שוב הצעד הראשון הוא להמיר כל אחת מאותיות טקסט צופן לערכי המספרים השלמים שלהן. פונקציית הפענוח היא
D ( x ) = a^-1 ( x - b ) mod m a^-1 : modular multiplicative inverse of a modulo m. i.e. it satisfies the equation 1 = a a^-1 mod m .
כדי למצוא היפוך כפל
עלינו למצוא מספר x כך ש:
אם נמצא את המספר x כך שהמשוואה נכונה אז x הוא היפוך של a ונקרא לו a^-1. הדרך הקלה ביותר לפתור את המשוואה הזו היא לחפש בכל אחד מהמספרים 1 עד 25 ולראות איזה מהם עונה על המשוואה.
[gxd] = gcd(am); % we can ignore g and d we dont need them x = mod(xm);
אם עכשיו תכפיל את x ו-a ותקטין את התוצאה (מוד 26) תקבל את התשובה 1. זכור שזו רק ההגדרה של הפוך כלומר אם a*x = 1 (mod 26) אז x הוא הפוך של a (ו-a הוא הפוך של x)
דוּגמָה:

יישום:
C++//CPP program to illustrate Affine Cipher #include using namespace std; //Key values of a and b const int a = 17; const int b = 20; string encryptMessage(string msg) { ///Cipher Text initially empty string cipher = ''; for (int i = 0; i < msg.length(); i++) { // Avoid space to be encrypted if(msg[i]!=' ') /* applying encryption formula ( a x + b ) mod m {here x is msg[i] and m is 26} and added 'A' to bring it in range of ascii alphabet[ 65-90 | A-Z ] */ cipher = cipher + (char) ((((a * (msg[i]-'A') ) + b) % 26) + 'A'); else //else simply append space character cipher += msg[i]; } return cipher; } string decryptCipher(string cipher) { string msg = ''; int a_inv = 0; int flag = 0; //Find a^-1 (the multiplicative inverse of a //in the group of integers modulo m.) for (int i = 0; i < 26; i++) { flag = (a * i) % 26; //Check if (a*i)%26 == 1 //then i will be the multiplicative inverse of a if (flag == 1) { a_inv = i; } } for (int i = 0; i < cipher.length(); i++) { if(cipher[i]!=' ') /*Applying decryption formula a^-1 ( x - b ) mod m {here x is cipher[i] and m is 26} and added 'A' to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */ msg = msg + (char) (((a_inv * ((cipher[i]+'A' - b)) % 26)) + 'A'); else //else simply append space character msg += cipher[i]; } return msg; } //Driver Program int main(void) { string msg = 'AFFINE CIPHER'; //Calling encryption function string cipherText = encryptMessage(msg); cout << 'Encrypted Message is : ' << cipherText<<endl; //Calling Decryption function cout << 'Decrypted Message is: ' << decryptCipher(cipherText); return 0; }
Java // Java program to illustrate Affine Cipher class GFG { // Key values of a and b static int a = 17; static int b = 20; static String encryptMessage(char[] msg) { /// Cipher Text initially empty String cipher = ''; for (int i = 0; i < msg.length; i++) { // Avoid space to be encrypted /* applying encryption formula ( a x + b ) mod m {here x is msg[i] and m is 26} and added 'A' to bring it in range of ascii alphabet[ 65-90 | A-Z ] */ if (msg[i] != ' ') { cipher = cipher + (char) ((((a * (msg[i] - 'A')) + b) % 26) + 'A'); } else // else simply append space character { cipher += msg[i]; } } return cipher; } static String decryptCipher(String cipher) { String msg = ''; int a_inv = 0; int flag = 0; //Find a^-1 (the multiplicative inverse of a //in the group of integers modulo m.) for (int i = 0; i < 26; i++) { flag = (a * i) % 26; // Check if (a*i)%26 == 1 // then i will be the multiplicative inverse of a if (flag == 1) { a_inv = i; } } for (int i = 0; i < cipher.length(); i++) { /*Applying decryption formula a^-1 ( x - b ) mod m {here x is cipher[i] and m is 26} and added 'A' to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */ if (cipher.charAt(i) != ' ') { msg = msg + (char) (((a_inv * ((cipher.charAt(i) + 'A' - b)) % 26)) + 'A'); } else //else simply append space character { msg += cipher.charAt(i); } } return msg; } // Driver code public static void main(String[] args) { String msg = 'AFFINE CIPHER'; // Calling encryption function String cipherText = encryptMessage(msg.toCharArray()); System.out.println('Encrypted Message is : ' + cipherText); // Calling Decryption function System.out.println('Decrypted Message is: ' + decryptCipher(cipherText)); } } // This code contributed by Rajput-Ji
Python # Implementation of Affine Cipher in Python # Extended Euclidean Algorithm for finding modular inverse # eg: modinv(7 26) = 15 def egcd(a b): xy uv = 01 10 while a != 0: q r = b//a b%a m n = x-u*q y-v*q ba xy uv = ar uv mn gcd = b return gcd x y def modinv(a m): gcd x y = egcd(a m) if gcd != 1: return None # modular inverse does not exist else: return x % m # affine cipher encryption function # returns the cipher text def affine_encrypt(text key): ''' C = (a*P + b) % 26 ''' return ''.join([ chr((( key[0]*(ord(t) - ord('A')) + key[1] ) % 26) + ord('A')) for t in text.upper().replace(' ' '') ]) # affine cipher decryption function # returns original text def affine_decrypt(cipher key): ''' P = (a^-1 * (C - b)) % 26 ''' return ''.join([ chr((( modinv(key[0] 26)*(ord(c) - ord('A') - key[1])) % 26) + ord('A')) for c in cipher ]) # Driver Code to test the above functions def main(): # declaring text and key text = 'AFFINE CIPHER' key = [17 20] # calling encryption function affine_encrypted_text = affine_encrypt(text key) print('Encrypted Text: {}'.format( affine_encrypted_text )) # calling decryption function print('Decrypted Text: {}'.format ( affine_decrypt(affine_encrypted_text key) )) if __name__ == '__main__': main() # This code is contributed by # Bhushan Borole
C# // C# program to illustrate Affine Cipher using System; class GFG { // Key values of a and b static int a = 17; static int b = 20; static String encryptMessage(char[] msg) { /// Cipher Text initially empty String cipher = ''; for (int i = 0; i < msg.Length; i++) { // Avoid space to be encrypted /* applying encryption formula ( a x + b ) mod m {here x is msg[i] and m is 26} and added 'A' to bring it in range of ascii alphabet[ 65-90 | A-Z ] */ if (msg[i] != ' ') { cipher = cipher + (char) ((((a * (msg[i] - 'A')) + b) % 26) + 'A'); } else // else simply append space character { cipher += msg[i]; } } return cipher; } static String decryptCipher(String cipher) { String msg = ''; int a_inv = 0; int flag = 0; //Find a^-1 (the multiplicative inverse of a //in the group of integers modulo m.) for (int i = 0; i < 26; i++) { flag = (a * i) % 26; // Check if (a*i)%26 == 1 // then i will be the multiplicative inverse of a if (flag == 1) { a_inv = i; } } for (int i = 0; i < cipher.Length; i++) { /*Applying decryption formula a^-1 ( x - b ) mod m {here x is cipher[i] and m is 26} and added 'A' to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */ if (cipher[i] != ' ') { msg = msg + (char) (((a_inv * ((cipher[i] + 'A' - b)) % 26)) + 'A'); } else //else simply append space character { msg += cipher[i]; } } return msg; } // Driver code public static void Main(String[] args) { String msg = 'AFFINE CIPHER'; // Calling encryption function String cipherText = encryptMessage(msg.ToCharArray()); Console.WriteLine('Encrypted Message is : ' + cipherText); // Calling Decryption function Console.WriteLine('Decrypted Message is: ' + decryptCipher(cipherText)); } } /* This code contributed by PrinciRaj1992 */
JavaScript //Javascript program to illustrate Affine Cipher //Key values of a and b let a = 17; let b = 20; function encryptMessage(msg) { ///Cipher Text initially empty let cipher = ''; for (let i = 0; i < msg.length; i++) { // Avoid space to be encrypted if(msg[i] !=' ') /* applying encryption formula ( a x + b ) mod m {here x is msg[i] and m is 26} and added 'A' to bring it in range of ascii alphabet[ 65-90 | A-Z ] */ cipher = cipher + String.fromCharCode((((a * (msg[i].charCodeAt(0)-65) ) + b) % 26) + 65); else //else simply append space character cipher += msg[i]; } return cipher; } function decryptCipher(cipher) { let msg = ''; let a_inv = 0; let flag = 0; //Find a^-1 (the multiplicative inverse of a //in the group of integers modulo m.) for (let i = 0; i < 26; i++) { flag = (a * i) % 26; //Check if (a*i)%26 == 1 //then i will be the multiplicative inverse of a if (flag == 1) { a_inv = i; } } for (let i = 0; i < cipher.length; i++) { if(cipher[i]!=' ') /*Applying decryption formula a^-1 ( x - b ) mod m {here x is cipher[i] and m is 26} and added 'A' to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */ msg = msg + String.fromCharCode(((a_inv * ((cipher[i].charCodeAt(0)+65 - b)) % 26)) + 65); else //else simply append space character msg += cipher[i]; } return msg; } //Driver Program let msg = 'AFFINE CIPHER'; //Calling encryption function let cipherText = encryptMessage(msg); console.log('Encrypted Message is : ' + cipherText); //Calling Decryption function console.log('Decrypted Message is: ' + decryptCipher(cipherText)); // The code is contributed by Arushi Jindal.
תְפוּקָה
Encrypted Message is : UBBAHK CAPJKX Decrypted Message is: AFFINE CIPHER
צור חידון