logo

ייצוג בינארי של המספר הגדול הבא עם אותו מספר של 1 ו-0

בהינתן קלט בינארי המייצג ייצוג בינארי של מספר חיובי n מצא ייצוג בינארי של המספר הקטן ביותר הגדול מ-n עם אותו מספר של 1 ו-0 כמו בייצוג בינארי של n. אם לא ניתן ליצור מספר כזה הדפס 'אין מספר גדול יותר'.
הקלט הבינארי עשוי להיות ויכול שלא להתאים אפילו ב-int long long unsigned.

דוגמאות: 

Input : 10010  
Output : 10100
Here n = (18)10 = (10010)2
next greater = (20)10 = (10100)2
Binary representation of 20 contains same number of
1's and 0's as in 18 .
Input : 111000011100111110
Output : 111000011101001111

בעיה זו מסתכמת במציאת התמורה הבאה של מחרוזת נתונה. אנחנו יכולים למצוא את next_permutation() של המספר הבינארי הקלט. 



להלן אלגוריתם למציאת התמורה הבאה במחרוזת בינארית.  

  1. חצו את המחרוזת הבינארית bstr מימין.
  2. בזמן המעבר מצא את המדד הראשון אֲנִי כך ש-bstr[i] = '0' ו-bstr[i+1] = '1'.
  3. החלפת תו של באינדקס 'i' ו-'i+1'.
  4. מכיוון שאנו צריכים את הערך הבא הקטן ביותר שקול תת מחרוזת מהאינדקס i+2 לסיים ולהזיז הכל 1 של במחרוזת המשנה בסופו של דבר.

להלן יישום השלבים לעיל. 

C++
// C++ program to find next permutation in a // binary string. #include    using namespace std; // Function to find the next greater number // with same number of 1's and 0's string nextGreaterWithSameDigits(string bnum) {  int l = bnum.size();  int i;  for (int i=l-2; i>=1; i--)  {  // locate first 'i' from end such that  // bnum[i]=='0' and bnum[i+1]=='1'  // swap these value and break;  if (bnum.at(i) == '0' &&  bnum.at(i+1) == '1')  {  char ch = bnum.at(i);  bnum.at(i) = bnum.at(i+1);  bnum.at(i+1) = ch;  break;  }  }  // if no swapping performed  if (i == 0)  'no greater number';  // Since we want the smallest next value  // shift all 1's at the end in the binary  // substring starting from index 'i+2'  int j = i+2 k = l-1;  while (j < k)  {  if (bnum.at(j) == '1' && bnum.at(k) == '0')  {  char ch = bnum.at(j);  bnum.at(j) = bnum.at(k);  bnum.at(k) = ch;  j++;  k--;  }  // special case while swapping if '0'  // occurs then break  else if (bnum.at(i) == '0')  break;  else  j++;  }  // required next greater number  return bnum; } // Driver program to test above int main() {  string bnum = '10010';  cout << 'Binary representation of next greater number = '  << nextGreaterWithSameDigits(bnum);  return 0; } 
Java
// Java program to find next permutation in a // binary string. class GFG  { // Function to find the next greater number // with same number of 1's and 0's static String nextGreaterWithSameDigits(char[] bnum) {  int l = bnum.length;  int i;  for (i = l - 2; i >= 1; i--)  {  // locate first 'i' from end such that  // bnum[i]=='0' and bnum[i+1]=='1'  // swap these value and break;  if (bnum[i] == '0' &&  bnum[i+1] == '1')  {  char ch = bnum[i];  bnum[i] = bnum[i+1];  bnum[i+1] = ch;  break;  }  }  // if no swapping performed  if (i == 0)  System.out.println('no greater number');  // Since we want the smallest next value  // shift all 1's at the end in the binary  // substring starting from index 'i+2'  int j = i + 2 k = l - 1;  while (j < k)  {  if (bnum[j] == '1' && bnum[k] == '0')  {  char ch = bnum[j];  bnum[j] = bnum[k];  bnum[k] = ch;  j++;  k--;  }  // special case while swapping if '0'  // occurs then break  else if (bnum[i] == '0')  break;  else  j++;  }  // required next greater number  return String.valueOf(bnum); } // Driver program to test above public static void main(String[] args) {  char[] bnum = '10010'.toCharArray();  System.out.println('Binary representation of next greater number = '  + nextGreaterWithSameDigits(bnum)); } } // This code contributed by Rajput-Ji 
Python3
# Python3 program to find next permutation in a # binary string. # Function to find the next greater number # with same number of 1's and 0's def nextGreaterWithSameDigits(bnum): l = len(bnum) bnum = list(bnum) for i in range(l - 2 0 -1): # locate first 'i' from end such that # bnum[i]=='0' and bnum[i+1]=='1' # swap these value and break if (bnum[i] == '0' and bnum[i + 1] == '1'): ch = bnum[i] bnum[i] = bnum[i + 1] bnum[i + 1] = ch break # if no swapping performed if (i == 0): return 'no greater number' # Since we want the smallest next value # shift all 1's at the end in the binary # substring starting from index 'i+2' j = i + 2 k = l - 1 while (j < k): if (bnum[j] == '1' and bnum[k] == '0'): ch = bnum[j] bnum[j] = bnum[k] bnum[k] = ch j += 1 k -= 1 # special case while swapping if '0' # occurs then break else if (bnum[i] == '0'): break else: j += 1 # required next greater number return bnum # Driver code bnum = '10010' print('Binary representation of next greater number = '*nextGreaterWithSameDigits(bnum)sep='') # This code is contributed by shubhamsingh10 
C#
// C# program to find next permutation in a // binary string. using System; class GFG  { // Function to find the next greater number // with same number of 1's and 0's static String nextGreaterWithSameDigits(char[] bnum) {  int l = bnum.Length;  int i;  for (i = l - 2; i >= 1; i--)  {  // locate first 'i' from end such that  // bnum[i]=='0' and bnum[i+1]=='1'  // swap these value and break;  if (bnum[i] == '0' &&  bnum[i+1] == '1')  {  char ch = bnum[i];  bnum[i] = bnum[i+1];  bnum[i+1] = ch;  break;  }  }  // if no swapping performed  if (i == 0)  Console.WriteLine('no greater number');  // Since we want the smallest next value  // shift all 1's at the end in the binary  // substring starting from index 'i+2'  int j = i + 2 k = l - 1;  while (j < k)  {  if (bnum[j] == '1' && bnum[k] == '0')  {  char ch = bnum[j];  bnum[j] = bnum[k];  bnum[k] = ch;  j++;  k--;  }  // special case while swapping if '0'  // occurs then break  else if (bnum[i] == '0')  break;  else  j++;  }  // required next greater number  return String.Join(''bnum); } // Driver code public static void Main(String[] args) {  char[] bnum = '10010'.ToCharArray();  Console.WriteLine('Binary representation of next greater number = '  + nextGreaterWithSameDigits(bnum)); } } // This code is contributed by 29AjayKumar 
JavaScript
<script> // Javascript program to find next permutation // in a binary string. // Function to find the next greater number // with same number of 1's and 0's function nextGreaterWithSameDigits(bnum) {  let l = bnum.length;  let i;    for(i = l - 2; i >= 1; i--)  {    // Locate first 'i' from end such that  // bnum[i]=='0' and bnum[i+1]=='1'  // swap these value and break;  if (bnum[i] == '0' &&  bnum[i + 1] == '1')  {  let ch = bnum[i];  bnum[i] = bnum[i+1];  bnum[i+1] = ch;  break;  }  }    // If no swapping performed  if (i == 0)  document.write('no greater number  
'
); // Since we want the smallest next value // shift all 1's at the end in the binary // substring starting from index 'i+2' let j = i + 2 k = l - 1; while (j < k) { if (bnum[j] == '1' && bnum[k] == '0') { let ch = bnum[j]; bnum[j] = bnum[k]; bnum[k] = ch; j++; k--; } // Special case while swapping if '0' // occurs then break else if (bnum[i] == '0') break; else j++; } // Required next greater number return (bnum).join(''); } // Driver code let bnum = '10010'.split(''); document.write('Binary representation of next ' + 'greater number = ' + nextGreaterWithSameDigits(bnum)); // This code is contributed by rag2127 </script>

תְפוּקָה
Binary representation of next greater number = 10100

מורכבות זמן: O(n) כאשר n הוא מספר הסיביות בקלט.
מרחב עזר: O(1)

 

גישה 2:

הנה הגישה למצוא את המספר הגדול הבא עם אותו מספר של 1 ו-0 במחרוזת בינארית:

  1. מצא את המחרוזת הכי ימנית שאינה נגררת (RT1). תן לאינדקס שלו להיות i.
  2. אם אין RT1 אז המחרוזת הבינארית הנתונה היא כבר המחרוזת הבינארית הגדולה ביותר האפשרית עם אותו מספר של 1 ו-0. החזר 'אין מספר גדול יותר'.
  3. מצא את האפס הימני ביותר מימין ל-i (תנו לאינדקס שלו להיות j) והחליפו אותו עם ה-RT1.
  4. מיין את המחרוזת המשנה מימין ל-j בסדר עולה.
  5. החזר את המחרוזת שהתקבלה.

להלן קוד ה-C++ וה-Java המתוקן עבור גישה זו:

C++
#include    using namespace std; // Function to find the next greater number // with same number of 1's and 0's string nextGreaterWithSameDigits(string bnum) {  int l = bnum.size();  int i = l - 1;  // Find the rightmost non-trailing one  while (i >= 0 && bnum[i] == '0') {  i--;  }  if (i < 0) {  return 'no greater number';  }  // Find the rightmost zero to the right of i  int j = i - 1;  while (j >= 0 && bnum[j] == '1') {  j--;  }  if (j < 0) {  return 'no greater number';  }  // Swap the RT1 with the rightmost zero to the right of i  swap(bnum[i] bnum[j]);  // Sort the substring to the right of j in ascending order  sort(bnum.begin() + j + 1 bnum.end());  // Required next greater number  return bnum; } // Driver program to test above int main() {  string bnum = '10010';  cout << 'Binary representation of next greater number = '  << nextGreaterWithSameDigits(bnum);  return 0; } 
Java
import java.util.Arrays; public class GFG {  // Function to find the next greater number  // with the same number of 1's and 0's  public static String nextGreaterWithSameDigits(String bnum) {  int l = bnum.length();  int i = l - 1;  // Find the rightmost non-trailing one  while (i >= 0 && bnum.charAt(i) == '0') {  i--;  }  if (i < 0) {  return 'no greater number';  }  // Find the rightmost zero to the right of i  int j = i - 1;  while (j >= 0 && bnum.charAt(j) == '1') {  j--;  }  if (j < 0) {  return 'no greater number';  }  // Swap the RT1 with the rightmost zero to the right of i  char[] bnumArray = bnum.toCharArray();  char temp = bnumArray[i];  bnumArray[i] = bnumArray[j];  bnumArray[j] = temp;  // Sort the substring to the right of j in ascending order  Arrays.sort(bnumArray j + 1 l);  // Required next greater number  return new String(bnumArray);  }  // Driver program to test above  public static void main(String[] args) {  String bnum = '10010';  System.out.println('Binary representation of next greater number = ' +  nextGreaterWithSameDigits(bnum));  } } 
Python
# Function to find the next greater number # with the same number of 1's and 0's def next_greater_with_same_digits(bnum): l = len(bnum) i = l - 1 # Find the rightmost non-trailing one while i >= 0 and bnum[i] == '0': i -= 1 if i < 0: return 'no greater number' # Find the rightmost zero to the right of i j = i - 1 while j >= 0 and bnum[j] == '1': j -= 1 if j < 0: return 'no greater number' # Swap the rightmost one with the rightmost zero to the right of i bnum_list = list(bnum) bnum_list[i] bnum_list[j] = bnum_list[j] bnum_list[i] bnum = ''.join(bnum_list) # Sort the substring to the right of j in ascending order bnum = bnum[:j + 1] + ''.join(sorted(bnum[j + 1:])) # Required next greater number return bnum # Driver program to test the function if __name__ == '__main__': bnum = '10010' result = next_greater_with_same_digits(bnum) print('Binary representation of the next greater number =' result) 
C#
using System; namespace NextGreaterNumberWithSameDigits {  class GFG  {  // Function to find the next greater number  // with same number of 1's and 0's  static string NextGreaterWithSameDigits(string bnum)  {  int l = bnum.Length;  int i = l - 1;  // Find the rightmost non-trailing one  while (i >= 0 && bnum[i] == '0')  {  i--;  }  if (i < 0)  {  return 'no greater number';  }  // Find the rightmost zero to the right of i  int j = i - 1;  while (j >= 0 && bnum[j] == '1')  {  j--;  }  if (j < 0)  {  return 'no greater number';  }  // Swap the RT1 with the rightmost zero to the right of i  char[] bnumArray = bnum.ToCharArray();  char temp = bnumArray[i];  bnumArray[i] = bnumArray[j];  bnumArray[j] = temp;  // Sort the substring to the right of j in ascending order  Array.Sort(bnumArray j + 1 l - j - 1);  // Required next greater number  return new string(bnumArray);  }  // Driver program to test above  static void Main(string[] args)  {  string bnum = '10010';  Console.WriteLine('Binary representation of next greater number = ' + NextGreaterWithSameDigits(bnum));  }  } } 
JavaScript
function nextGreaterWithSameDigits(bnum) {  const l = bnum.length;  let i = l - 1;  // Find the rightmost non-trailing one  while (i >= 0 && bnum[i] === '0') {  i--;  }  if (i < 0) {  return 'no greater number';  }  // Find the rightmost zero to the right of i  let j = i - 1;  while (j >= 0 && bnum[j] === '1') {  j--;  }  if (j < 0) {  return 'no greater number';  }  // Convert string to array for swapping  bnum = bnum.split('');    // Swap the RT1 with the rightmost zero to the right of i  [bnum[i] bnum[j]] = [bnum[j] bnum[i]];  // Sort the substring to the right of j in ascending order  const sortedSubstring = bnum.slice(j + 1).sort().join('');  // Required next greater number  return bnum.slice(0 j + 1).join('') + sortedSubstring; } // Driver program to test above function main() {  const bnum = '10010';  console.log('Binary representation of next greater number =' nextGreaterWithSameDigits(bnum)); } main(); 

תְפוּקָה
Binary representation of next greater number = 10100

מורכבות זמן : O(n + m log m) כאשר n הוא אורך מחרוזת הקלט ו-m הוא אורך המחרוזת המשנה מימין לתווים שהוחלפו.
מרחב עזר : O(n)

צור חידון