logo

האלגוריתם של שטיין למציאת GCD

נסה את זה ב-GfG Practice ' title=

האלגוריתם של שטיין אוֹ אלגוריתם GCD בינארי הוא אלגוריתם שמחשב את המחלק המשותף הגדול ביותר מבין שני מספרים שלמים לא שליליים. האלגוריתם של שטיין מחליף את החלוקה בהשוואות וחיסור של משמרות אריתמטיות.

דוגמאות:  



קֶלֶט : a = 17 b = 34
תְפוּקָה : 17

קֶלֶט : a = 50 b = 49
תְפוּקָה : 1

אלגוריתם למציאת GCD באמצעות האלגוריתם של שטיין gcd(a b)  

האלגוריתם הוא בעיקר אופטימיזציה על פני תקן אלגוריתם אוקלידי עבור GCD



  1. אם גם a וגם b הם 0 gcd הוא אפס gcd(0 0) = 0.
  2. gcd(a 0) = a ו-gcd(0 b) = b כי הכל מחלק 0.
  3. אם a ו-b שניהם אפילו gcd(a b) = 2*gcd(a/2 b/2) כי 2 הוא מחלק משותף. הכפל עם 2 יכול להיעשות עם אופרטור העברה סיביות.
  4. אם a זוגי ו-b אי זוגי gcd(a b) = gcd(a/2 b). באופן דומה אם a אי זוגי ו-b זוגי אז 
    gcd(a b) = gcd(a b/2). זה בגלל ש-2 אינו מחלק משותף.
  5. אם גם a וגם b הם אי זוגיים אז gcd(a b) = gcd(|a-b|/2 b). שימו לב שההבדל של שני מספרים אי-זוגיים הוא זוגי
  6. חזור על שלבים 3-5 עד a = b או עד a = 0. בכל אחד מהמקרים, ה-GCD הוא כוח(2 k) * b כאשר החזקה (2 k) היא 2 העלאה בחזקת k ו-k הוא מספר הגורמים המשותפים של 2 שנמצאו בשלב 3.
C++
// Iterative C++ program to // implement Stein's Algorithm #include    using namespace std; // Function to implement // Stein's Algorithm int gcd(int a int b) {  /* GCD(0 b) == b; GCD(a 0) == a  GCD(0 0) == 0 */  if (a == 0)  return b;  if (b == 0)  return a;  /*Finding K where K is the  greatest power of 2  that divides both a and b. */  int k;  for (k = 0; ((a | b) & 1) == 0; ++k)   {  a >>= 1;  b >>= 1;  }  /* Dividing a by 2 until a becomes odd */  while ((a & 1) == 0)  a >>= 1;  /* From here on 'a' is always odd. */  do  {  /* If b is even remove all factor of 2 in b */  while ((b & 1) == 0)  b >>= 1;  /* Now a and b are both odd.  Swap if necessary so a <= b  then set b = b - a (which is even).*/  if (a > b)  swap(a b); // Swap u and v.  b = (b - a);  }while (b != 0);  /* restore common factors of 2 */  return a << k; } // Driver code int main() {  int a = 34 b = 17;  printf('Gcd of given numbers is %dn' gcd(a b));  return 0; } 
Java
// Iterative Java program to // implement Stein's Algorithm import java.io.*; class GFG {  // Function to implement Stein's  // Algorithm  static int gcd(int a int b)  {  // GCD(0 b) == b; GCD(a 0) == a  // GCD(0 0) == 0  if (a == 0)  return b;  if (b == 0)  return a;  // Finding K where K is the greatest  // power of 2 that divides both a and b  int k;  for (k = 0; ((a | b) & 1) == 0; ++k)   {  a >>= 1;  b >>= 1;  }  // Dividing a by 2 until a becomes odd  while ((a & 1) == 0)  a >>= 1;  // From here on 'a' is always odd.  do   {  // If b is even remove  // all factor of 2 in b  while ((b & 1) == 0)  b >>= 1;  // Now a and b are both odd. Swap  // if necessary so a <= b then set  // b = b - a (which is even)  if (a > b)   {  // Swap u and v.  int temp = a;  a = b;  b = temp;  }  b = (b - a);  } while (b != 0);  // restore common factors of 2  return a << k;  }  // Driver code  public static void main(String args[])  {  int a = 34 b = 17;  System.out.println('Gcd of given '  + 'numbers is ' + gcd(a b));  } } // This code is contributed by Nikita Tiwari 
Python
# Iterative Python 3 program to # implement Stein's Algorithm # Function to implement # Stein's Algorithm def gcd(a b): # GCD(0 b) == b; GCD(a 0) == a # GCD(0 0) == 0 if (a == 0): return b if (b == 0): return a # Finding K where K is the # greatest power of 2 that # divides both a and b. k = 0 while(((a | b) & 1) == 0): a = a >> 1 b = b >> 1 k = k + 1 # Dividing a by 2 until a becomes odd while ((a & 1) == 0): a = a >> 1 # From here on 'a' is always odd. while(b != 0): # If b is even remove all # factor of 2 in b while ((b & 1) == 0): b = b >> 1 # Now a and b are both odd. Swap if # necessary so a <= b then set # b = b - a (which is even). if (a > b): # Swap u and v. temp = a a = b b = temp b = (b - a) # restore common factors of 2 return (a << k) # Driver code a = 34 b = 17 print('Gcd of given numbers is ' gcd(a b)) # This code is contributed by Nikita Tiwari. 
C#
// Iterative C# program to implement // Stein's Algorithm using System; class GFG {  // Function to implement Stein's  // Algorithm  static int gcd(int a int b)  {  // GCD(0 b) == b; GCD(a 0) == a  // GCD(0 0) == 0  if (a == 0)  return b;  if (b == 0)  return a;  // Finding K where K is the greatest  // power of 2 that divides both a and b  int k;  for (k = 0; ((a | b) & 1) == 0; ++k)   {  a >>= 1;  b >>= 1;  }  // Dividing a by 2 until a becomes odd  while ((a & 1) == 0)  a >>= 1;  // From here on 'a' is always odd  do   {  // If b is even remove  // all factor of 2 in b  while ((b & 1) == 0)  b >>= 1;  /* Now a and b are both odd. Swap  if necessary so a <= b then set  b = b - a (which is even).*/  if (a > b) {  // Swap u and v.  int temp = a;  a = b;  b = temp;  }  b = (b - a);  } while (b != 0);  /* restore common factors of 2 */  return a << k;  }  // Driver code  public static void Main()  {  int a = 34 b = 17;  Console.Write('Gcd of given '  + 'numbers is ' + gcd(a b));  } } // This code is contributed by nitin mittal 
JavaScript
<script> // Iterative JavaScript program to // implement Stein's Algorithm // Function to implement // Stein's Algorithm function gcd( a b) {  /* GCD(0 b) == b; GCD(a 0) == a  GCD(0 0) == 0 */  if (a == 0)  return b;  if (b == 0)  return a;  /*Finding K where K is the  greatest power of 2  that divides both a and b. */  let k;  for (k = 0; ((a | b) & 1) == 0; ++k)   {  a >>= 1;  b >>= 1;  }  /* Dividing a by 2 until a becomes odd */  while ((a & 1) == 0)  a >>= 1;  /* From here on 'a' is always odd. */  do  {  /* If b is even remove all factor of 2 in b */  while ((b & 1) == 0)  b >>= 1;  /* Now a and b are both odd.  Swap if necessary so a <= b  then set b = b - a (which is even).*/  if (a > b){  let t = a;  a = b;  b = t;  }  b = (b - a);  }while (b != 0);  /* restore common factors of 2 */  return a << k; } // Driver code  let a = 34 b = 17;  document.write('Gcd of given numbers is '+ gcd(a b)); // This code contributed by gauravrajput1  </script> 
PHP
 // Iterative php program to  // implement Stein's Algorithm // Function to implement  // Stein's Algorithm function gcd($a $b) { // GCD(0 b) == b; GCD(a 0) == a // GCD(0 0) == 0 if ($a == 0) return $b; if ($b == 0) return $a; // Finding K where K is the greatest // power of 2 that divides both a and b. $k; for ($k = 0; (($a | $b) & 1) == 0; ++$k) { $a >>= 1; $b >>= 1; } // Dividing a by 2 until a becomes odd  while (($a & 1) == 0) $a >>= 1; // From here on 'a' is always odd. do { // If b is even remove  // all factor of 2 in b  while (($b & 1) == 0) $b >>= 1; // Now a and b are both odd. Swap // if necessary so a <= b then set  // b = b - a (which is even) if ($a > $b) swap($a $b); // Swap u and v. $b = ($b - $a); } while ($b != 0); // restore common factors of 2 return $a << $k; } // Driver code $a = 34; $b = 17; echo 'Gcd of given numbers is ' . gcd($a $b); // This code is contributed by ajit ?> 

תְפוּקָה
Gcd of given numbers is 17

מורכבות זמן: O(N*N)
מרחב עזר: O(1)

[גישה צפויה 2] יישום רקורסיבי - O(N*N) זמן ו O(N*N) מֶרחָב

C++
// Recursive C++ program to // implement Stein's Algorithm #include    using namespace std; // Function to implement // Stein's Algorithm int gcd(int a int b) {  if (a == b)  return a;  // GCD(0 b) == b; GCD(a 0) == a  // GCD(0 0) == 0  if (a == 0)  return b;  if (b == 0)  return a;  // look for factors of 2  if (~a & 1) // a is even  {  if (b & 1) // b is odd  return gcd(a >> 1 b);  else // both a and b are even  return gcd(a >> 1 b >> 1) << 1;  }  if (~b & 1) // a is odd b is even  return gcd(a b >> 1);  // reduce larger number  if (a > b)  return gcd((a - b) >> 1 b);  return gcd((b - a) >> 1 a); } // Driver code int main() {  int a = 34 b = 17;  printf('Gcd of given numbers is %dn' gcd(a b));  return 0; } 
Java
// Recursive Java program to // implement Stein's Algorithm import java.io.*; class GFG {  // Function to implement  // Stein's Algorithm  static int gcd(int a int b)  {  if (a == b)  return a;  // GCD(0 b) == b; GCD(a 0) == a  // GCD(0 0) == 0  if (a == 0)  return b;  if (b == 0)  return a;  // look for factors of 2  if ((~a & 1) == 1) // a is even  {  if ((b & 1) == 1) // b is odd  return gcd(a >> 1 b);  else // both a and b are even  return gcd(a >> 1 b >> 1) << 1;  }  // a is odd b is even  if ((~b & 1) == 1)  return gcd(a b >> 1);  // reduce larger number  if (a > b)  return gcd((a - b) >> 1 b);  return gcd((b - a) >> 1 a);  }  // Driver code  public static void main(String args[])  {  int a = 34 b = 17;  System.out.println('Gcd of given'  + 'numbers is ' + gcd(a b));  } } // This code is contributed by Nikita Tiwari 
Python
# Recursive Python 3 program to # implement Stein's Algorithm # Function to implement # Stein's Algorithm def gcd(a b): if (a == b): return a # GCD(0 b) == b; GCD(a 0) == a # GCD(0 0) == 0 if (a == 0): return b if (b == 0): return a # look for factors of 2 # a is even if ((~a & 1) == 1): # b is odd if ((b & 1) == 1): return gcd(a >> 1 b) else: # both a and b are even return (gcd(a >> 1 b >> 1) << 1) # a is odd b is even if ((~b & 1) == 1): return gcd(a b >> 1) # reduce larger number if (a > b): return gcd((a - b) >> 1 b) return gcd((b - a) >> 1 a) # Driver code a b = 34 17 print('Gcd of given numbers is ' gcd(a b)) # This code is contributed # by Nikita Tiwari. 
C#
// Recursive C# program to // implement Stein's Algorithm using System; class GFG {  // Function to implement  // Stein's Algorithm  static int gcd(int a int b)  {  if (a == b)  return a;  // GCD(0 b) == b;  // GCD(a 0) == a  // GCD(0 0) == 0  if (a == 0)  return b;  if (b == 0)  return a;  // look for factors of 2  // a is even  if ((~a & 1) == 1) {  // b is odd  if ((b & 1) == 1)  return gcd(a >> 1 b);  else  // both a and b are even  return gcd(a >> 1 b >> 1) << 1;  }  // a is odd b is even  if ((~b & 1) == 1)  return gcd(a b >> 1);  // reduce larger number  if (a > b)  return gcd((a - b) >> 1 b);  return gcd((b - a) >> 1 a);  }  // Driver code  public static void Main()  {  int a = 34 b = 17;  Console.Write('Gcd of given'  + 'numbers is ' + gcd(a b));  } } // This code is contributed by nitin mittal. 
JavaScript
<script> // JavaScript program to // implement Stein's Algorithm  // Function to implement  // Stein's Algorithm  function gcd(a b)  {  if (a == b)  return a;    // GCD(0 b) == b; GCD(a 0) == a  // GCD(0 0) == 0  if (a == 0)  return b;  if (b == 0)  return a;    // look for factors of 2  if ((~a & 1) == 1) // a is even  {  if ((b & 1) == 1) // b is odd  return gcd(a >> 1 b);    else // both a and b are even  return gcd(a >> 1 b >> 1) << 1;  }    // a is odd b is even  if ((~b & 1) == 1)  return gcd(a b >> 1);    // reduce larger number  if (a > b)  return gcd((a - b) >> 1 b);    return gcd((b - a) >> 1 a);  } // Driver Code  let a = 34 b = 17;  document.write('Gcd of given '  + 'numbers is ' + gcd(a b));   </script> 
PHP
 // Recursive PHP program to // implement Stein's Algorithm // Function to implement // Stein's Algorithm function gcd($a $b) { if ($a == $b) return $a; /* GCD(0 b) == b; GCD(a 0) == a  GCD(0 0) == 0 */ if ($a == 0) return $b; if ($b == 0) return $a; // look for factors of 2 if (~$a & 1) // a is even { if ($b & 1) // b is odd return gcd($a >> 1 $b); else // both a and b are even return gcd($a >> 1 $b >> 1) << 1; } if (~$b & 1) // a is odd b is even return gcd($a $b >> 1); // reduce larger number if ($a > $b) return gcd(($a - $b) >> 1 $b); return gcd(($b - $a) >> 1 $a); } // Driver code $a = 34; $b = 17; echo 'Gcd of given numbers is: ' gcd($a $b); // This code is contributed by aj_36 ?> 

תְפוּקָה
Gcd of given numbers is 17

מורכבות זמן : O(N*N) כאשר N הוא מספר הביטים במספר הגדול יותר.
מרחב עזר: O(N*N) כאשר N הוא מספר הביטים במספר הגדול יותר.

אולי תאהב גם - אלגוריתם אוקלידי בסיסי ומורחב

יתרונות על פני אלגוריתם GCD של אוקלידס

  • האלגוריתם של שטיין הוא גרסה אופטימלית של אלגוריתם GCD של אוקלידס.
  • זה יעיל יותר על ידי שימוש באופרטור ההזזה סיביות.