ניתן לך n זוגות של מספרים. בכל זוג המספר הראשון תמיד קטן מהמספר השני. זוג (ג ד) יכול לעקוב אחר זוג אחר (א ב) אם ב< c. Chain of pairs can be formed in this fashion. Find the longest chain which can be formed from a given set of pairs. דוגמאות:
Input: (5 24) (39 60) (15 28) (27 40) (50 90) Output: (5 24) (27 40) (50 90) Input: (11 20) {10 40) (45 60) (39 40) Output: (11 20) (39 40) (45 60)
ב קוֹדֵם פוסט שדיברנו על בעיית שרשרת זוגות באורך מקסימלי. עם זאת, הפוסט כיסה רק את הקוד הקשור למציאת אורך השרשרת בגודל מקסימלי, אך לא לבניית שרשרת בגודל מקסימלי. בפוסט זה נדון כיצד לבנות שרשרת זוגות באורך מקסימלי. הרעיון הוא תחילה למיין זוגות נתונים בסדר הולך וגדל של האלמנט הראשון שלהם. תן arr[0..n-1] להיות מערך הקלט של זוגות לאחר המיון. אנו מגדירים וקטור L כך ש-L[i] הוא עצמו הוא וקטור שמאחסן שרשרת זוגות באורך מקסימלי של arr[0..i] המסתיימת ב-arr[i]. לכן עבור אינדקס i L[i] ניתן לכתוב באופן רקורסיבי כ-
L[0] = {arr[0]} L[i] = {Max(L[j])} + arr[i] where j < i and arr[j].b < arr[i].a = arr[i] if there is no such j
לדוגמה עבור (5 24) (39 60) (15 28) (27 40) (50 90)
L[0]: (5 24) L[1]: (5 24) (39 60) L[2]: (15 28) L[3]: (5 24) (27 40) L[4]: (5 24) (27 40) (50 90)
שימו לב שמיון הזוגות נעשה מכיוון שאנו צריכים למצוא את אורך הזוגות המקסימלי וההזמנה לא משנה כאן. אם לא נמיין נקבל זוגות בסדר הולך וגדל אבל הם לא יהיו זוגות מקסימליים אפשריים. להלן יישום הרעיון לעיל -
C++/* Dynamic Programming solution to construct Maximum Length Chain of Pairs */ #include using namespace std; struct Pair { int a; int b; }; // comparator function for sort function int compare(Pair x Pair y) { return x.a < y.a; } // Function to construct Maximum Length Chain // of Pairs void maxChainLength(vector<Pair> arr) { // Sort by start time sort(arr.begin() arr.end() compare); // L[i] stores maximum length of chain of // arr[0..i] that ends with arr[i]. vector<vector<Pair> > L(arr.size()); // L[0] is equal to arr[0] L[0].push_back(arr[0]); // start from index 1 for (int i = 1; i < arr.size(); i++) { // for every j less than i for (int j = 0; j < i; j++) { // L[i] = {Max(L[j])} + arr[i] // where j < i and arr[j].b < arr[i].a if ((arr[j].b < arr[i].a) && (L[j].size() > L[i].size())) L[i] = L[j]; } L[i].push_back(arr[i]); } // print max length vector vector<Pair> maxChain; for (vector<Pair> x : L) if (x.size() > maxChain.size()) maxChain = x; for (Pair pair : maxChain) cout << '(' << pair.a << ' ' << pair.b << ') '; } // Driver Function int main() { Pair a[] = {{5 29} {39 40} {15 28} {27 40} {50 90}}; int n = sizeof(a)/sizeof(a[0]); vector<Pair> arr(a a + n); maxChainLength(arr); return 0; }
Java // Java program to implement the approach import java.util.ArrayList; import java.util.Collections; import java.util.List; // User Defined Pair Class class Pair { int a; int b; } class GFG { // Custom comparison function public static int compare(Pair x Pair y) { return x.a - (y.a); } public static void maxChainLength(List<Pair> arr) { // Sort by start time Collections.sort(arr Main::compare); // L[i] stores maximum length of chain of // arr[0..i] that ends with arr[i]. List<List<Pair>> L = new ArrayList<>(); // L[0] is equal to arr[0] List<Pair> l0 = new ArrayList<>(); l0.add(arr.get(0)); L.add(l0); for (int i = 0; i < arr.size() - 1; i++) { L.add(new ArrayList<>()); } // start from index 1 for (int i = 1; i < arr.size(); i++) { // for every j less than i for (int j = 0; j < i; j++) { // L[i] = {Max(L[j])} + arr[i] // where j < i and arr[j].b < arr[i].a if (arr.get(j).b < arr.get(i).a && L.get(j).size() > L.get(i).size()) L.set(i L.get(j)); } L.get(i).add(arr.get(i)); } // print max length vector List<Pair> maxChain = new ArrayList<>(); for (List<Pair> x : L) if (x.size() > maxChain.size()) maxChain = x; for (Pair pair : maxChain) System.out.println('(' + pair.a + ' ' + pair.b + ') '); } // Driver Code public static void main(String[] args) { Pair[] a = {new Pair() {{a = 5; b = 29;}} new Pair() {{a = 39; b = 40;}} new Pair() {{a = 15; b = 28;}} new Pair() {{a = 27; b = 40;}} new Pair() {{a = 50; b = 90;}}}; int n = a.length; List<Pair> arr = new ArrayList<>(); for (Pair anA : a) { arr.add(anA); } // Function call maxChainLength(arr); } } // This code is contributed by phasing17
Python3 # Dynamic Programming solution to construct # Maximum Length Chain of Pairs class Pair: def __init__(self a b): self.a = a self.b = b def __lt__(self other): return self.a < other.a def maxChainLength(arr): # Function to construct # Maximum Length Chain of Pairs # Sort by start time arr.sort() # L[i] stores maximum length of chain of # arr[0..i] that ends with arr[i]. L = [[] for x in range(len(arr))] # L[0] is equal to arr[0] L[0].append(arr[0]) # start from index 1 for i in range(1 len(arr)): # for every j less than i for j in range(i): # L[i] = {Max(L[j])} + arr[i] # where j < i and arr[j].b < arr[i].a if (arr[j].b < arr[i].a and len(L[j]) > len(L[i])): L[i] = L[j] L[i].append(arr[i]) # print max length vector maxChain = [] for x in L: if len(x) > len(maxChain): maxChain = x for pair in maxChain: print('({a}{b})'.format(a = pair.a b = pair.b) end = ' ') print() # Driver Code if __name__ == '__main__': arr = [Pair(5 29) Pair(39 40) Pair(15 28) Pair(27 40) Pair(50 90)] n = len(arr) maxChainLength(arr) # This code is contributed # by vibhu4agarwal
C# using System; using System.Collections.Generic; public class Pair { public int a; public int b; } public class Program { public static int Compare(Pair x Pair y) { return x.a - (y.a); } public static void MaxChainLength(List<Pair> arr) { // Sort by start time arr.Sort(Compare); // L[i] stores maximum length of chain of // arr[0..i] that ends with arr[i]. List<List<Pair>> L = new List<List<Pair>>(); // L[0] is equal to arr[0] L.Add(new List<Pair> { arr[0] }); for (int i = 0; i < arr.Count - 1; i++) L.Add(new List<Pair>()); // start from index 1 for (int i = 1; i < arr.Count; i++) { // for every j less than i for (int j = 0; j < i; j++) { // L[i] = {Max(L[j])} + arr[i] // where j < i and arr[j].b < arr[i].a if (arr[j].b < arr[i].a && L[j].Count > L[i].Count) L[i] = L[j]; } L[i].Add(arr[i]); } // print max length vector List<Pair> maxChain = new List<Pair>(); foreach (List<Pair> x in L) if (x.Count > maxChain.Count) maxChain = x; foreach (Pair pair in maxChain) Console.WriteLine('(' + pair.a + ' ' + pair.b + ') '); } public static void Main() { Pair[] a = { new Pair() { a = 5 b = 29 } new Pair() { a = 39 b = 40 } new Pair() { a = 15 b = 28 } new Pair() { a = 27 b = 40 } new Pair() { a = 50 b = 90 } }; int n = a.Length; List<Pair> arr = new List<Pair>(a); MaxChainLength(arr); } }
JavaScript <script> // Dynamic Programming solution to construct // Maximum Length Chain of Pairs class Pair{ constructor(a b){ this.a = a this.b = b } } function maxChainLength(arr){ // Function to construct // Maximum Length Chain of Pairs // Sort by start time arr.sort((cd) => c.a - d.a) // L[i] stores maximum length of chain of // arr[0..i] that ends with arr[i]. let L = new Array(arr.length).fill(0).map(()=>new Array()) // L[0] is equal to arr[0] L[0].push(arr[0]) // start from index 1 for (let i=1;i<arr.length;i++){ // for every j less than i for(let j=0;j<i;j++){ // L[i] = {Max(L[j])} + arr[i] // where j < i and arr[j].b < arr[i].a if (arr[j].b < arr[i].a && L[j].length > L[i].length) L[i] = L[j] } L[i].push(arr[i]) } // print max length vector let maxChain = [] for(let x of L){ if(x.length > maxChain.length) maxChain = x } for(let pair of maxChain) document.write(`(${pair.a} ${pair.b}) `) document.write('') } // driver code let arr = [new Pair(5 29) new Pair(39 40) new Pair(15 28) new Pair(27 40) new Pair(50 90)] let n = arr.length maxChainLength(arr) /// This code is contributed by shinjanpatra </script>
תְפוּקָה:
(5 29) (39 40) (50 90)
מורכבות הזמן מהפתרון הנ"ל לתכנות דינמי הוא O(n2) כאשר n הוא מספר הזוגות. חלל עזר בשימוש התוכנית הוא O(n2).