בהינתן מערך ממוין של n ערכים בחלוקה אחידה arr[] כתוב פונקציה לחיפוש אלמנט מסוים x במערך.
חיפוש לינארי מוצא את האלמנט בזמן O(n). קפיצה חיפוש לוקח O(n) זמן ו חיפוש בינארי לוקח זמן O(log n).
חיפוש האינטרפולציה הוא שיפור לעומת חיפוש בינארי למקרים שבהם הערכים במערך ממוין מחולקים באופן אחיד. אינטרפולציה בונה נקודות נתונים חדשות בטווח של קבוצה נפרדת של נקודות נתונים ידועות. חיפוש בינארי תמיד הולך לאלמנט האמצעי כדי לבדוק. מצד שני, חיפוש אינטרפולציה עשוי להגיע למיקומים שונים בהתאם לערך המפתח שמחפשים. לדוגמה, אם הערך של המפתח קרוב יותר לאלמנט האחרון, סביר להניח שחיפוש אינטרפולציה יתחיל בחיפוש לקראת הקצה.
כדי למצוא את המיקום שיש לחפש, הוא משתמש בנוסחה הבאה.
// הרעיון של הנוסחה הוא להחזיר ערך גבוה יותר של pos
// כאשר האלמנט שיש לחפש קרוב יותר ל-arr[hi]. ו
// ערך קטן יותר כאשר קרוב יותר ל-arr[lo]
arr[] ==> מערך שבו צריך לחפש אלמנטים
x ==> רכיב לחיפוש
להגדיר מחשבlo ==> אינדקס מתחיל ב-arr[]
המרת מחרוזת לאינטרגרהיי ==> סיום אינדקס ב-arr[]
אחרי = ה-+
ישנן שיטות אינטרפולציה רבות ושונות ואחת כזו ידועה בשם אינטרפולציה ליניארית. אינטרפולציה לינארית לוקחת שתי נקודות נתונים שאנו מניחים כ-(x1y1) ו-(x2y2) והנוסחה היא: at point(xy).
אלגוריתם זה פועל באופן שבו אנו מחפשים מילה במילון. אלגוריתם החיפוש האינטרפולציה משפר את אלגוריתם החיפוש הבינארי. הנוסחה למציאת ערך היא: K = >K הוא קבוע המשמש לצמצום מרחב החיפוש. במקרה של חיפוש בינארי הערך עבור קבוע זה הוא: K=(נמוך+גבוה)/2.
לישון ב-javascript
ניתן לגזור את הנוסחה עבור pos באופן הבא.
Let's assume that the elements of the array are linearly distributed.
General equation of line : y = m*x + c.
y is the value in the array and x is its index.
Now putting value of lohi and x in the equation
arr[hi] = m*hi+c ----(1)
arr[lo] = m*lo+c ----(2)
x = m*pos + c ----(3)
m = (arr[hi] - arr[lo] )/ (hi - lo)
subtracting eqxn (2) from (3)
x - arr[lo] = m * (pos - lo)
lo + (x - arr[lo])/m = pos
pos = lo + (x - arr[lo]) *(hi - lo)/(arr[hi] - arr[lo])
אַלגוֹרִיתְם
שאר אלגוריתם האינטרפולציה זהה למעט לוגיקה של המחיצה לעיל.
- שלב 1: בלולאה חשב את הערך של 'pos' באמצעות נוסחת מיקום הבדיקה.
- שלב 2: אם מדובר בהתאמה החזירו את האינדקס של הפריט וצא.
- שלב 3: אם הפריט קטן מ-arr[pos] חשב את מיקום הבדיקה של תת-מערך השמאלי. אחרת חשב את אותו הדבר במערך המשנה הימני.
- שלב 4: חזור על הפעולה עד שתמצא התאמה או שמערך המשנה יצטמצם לאפס.
להלן יישום האלגוריתם.
// C++ program to implement interpolation // search with recursion #include using namespace std; // If x is present in arr[0..n-1] then returns // index of it else returns -1. int interpolationSearch(int arr[] int lo int hi int x) { int pos; // Since array is sorted an element present // in array must be in range defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((double)(hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code int main() { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = sizeof(arr) / sizeof(arr[0]); // Element to be searched int x = 18; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) cout << 'Element found at index ' << index; else cout << 'Element not found.'; return 0; } // This code is contributed by equbalzeeshan
C // C program to implement interpolation search // with recursion #include // If x is present in arr[0..n-1] then returns // index of it else returns -1. int interpolationSearch(int arr[] int lo int hi int x) { int pos; // Since array is sorted an element present // in array must be in range defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((double)(hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code int main() { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = sizeof(arr) / sizeof(arr[0]); int x = 18; // Element to be searched int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) printf('Element found at index %d' index); else printf('Element not found.'); return 0; }
Java // Java program to implement interpolation // search with recursion import java.util.*; class GFG { // If x is present in arr[0..n-1] then returns // index of it else returns -1. public static int interpolationSearch(int arr[] int lo int hi int x) { int pos; // Since array is sorted an element // present in array must be in range // defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code public static void main(String[] args) { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = arr.length; // Element to be searched int x = 18; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) System.out.println('Element found at index ' + index); else System.out.println('Element not found.'); } } // This code is contributed by equbalzeeshan
Python # Python3 program to implement # interpolation search # with recursion # If x is present in arr[0..n-1] then # returns index of it else returns -1. def interpolationSearch(arr lo hi x): # Since array is sorted an element present # in array must be in range defined by corner if (lo <= hi and x >= arr[lo] and x <= arr[hi]): # Probing the position with keeping # uniform distribution in mind. pos = lo + ((hi - lo) // (arr[hi] - arr[lo]) * (x - arr[lo])) # Condition of target found if arr[pos] == x: return pos # If x is larger x is in right subarray if arr[pos] < x: return interpolationSearch(arr pos + 1 hi x) # If x is smaller x is in left subarray if arr[pos] > x: return interpolationSearch(arr lo pos - 1 x) return -1 # Driver code # Array of items in which # search will be conducted arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47] n = len(arr) # Element to be searched x = 18 index = interpolationSearch(arr 0 n - 1 x) if index != -1: print('Element found at index' index) else: print('Element not found') # This code is contributed by Hardik Jain
C# // C# program to implement // interpolation search using System; class GFG{ // If x is present in // arr[0..n-1] then // returns index of it // else returns -1. static int interpolationSearch(int []arr int lo int hi int x) { int pos; // Since array is sorted an element // present in array must be in range // defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position // with keeping uniform // distribution in mind. pos = lo + (((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of // target found if(arr[pos] == x) return pos; // If x is larger x is in right sub array if(arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if(arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code public static void Main() { // Array of items on which search will // be conducted. int []arr = new int[]{ 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; // Element to be searched int x = 18; int n = arr.Length; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) Console.WriteLine('Element found at index ' + index); else Console.WriteLine('Element not found.'); } } // This code is contributed by equbalzeeshan
JavaScript <script> // Javascript program to implement Interpolation Search // If x is present in arr[0..n-1] then returns // index of it else returns -1. function interpolationSearch(arr lo hi x){ let pos; // Since array is sorted an element present // in array must be in range defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + Math.floor(((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo]));; // Condition of target found if (arr[pos] == x){ return pos; } // If x is larger x is in right sub array if (arr[pos] < x){ return interpolationSearch(arr pos + 1 hi x); } // If x is smaller x is in left sub array if (arr[pos] > x){ return interpolationSearch(arr lo pos - 1 x); } } return -1; } // Driver Code let arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47]; let n = arr.length; // Element to be searched let x = 18 let index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1){ document.write(`Element found at index ${index}`) }else{ document.write('Element not found'); } // This code is contributed by _saurabh_jaiswal </script>
PHP // PHP program to implement $erpolation search // with recursion // If x is present in arr[0..n-1] then returns // index of it else returns -1. function interpolationSearch($arr $lo $hi $x) { // Since array is sorted an element present // in array must be in range defined by corner if ($lo <= $hi && $x >= $arr[$lo] && $x <= $arr[$hi]) { // Probing the position with keeping // uniform distribution in mind. $pos = (int)($lo + (((double)($hi - $lo) / ($arr[$hi] - $arr[$lo])) * ($x - $arr[$lo]))); // Condition of target found if ($arr[$pos] == $x) return $pos; // If x is larger x is in right sub array if ($arr[$pos] < $x) return interpolationSearch($arr $pos + 1 $hi $x); // If x is smaller x is in left sub array if ($arr[$pos] > $x) return interpolationSearch($arr $lo $pos - 1 $x); } return -1; } // Driver Code // Array of items on which search will // be conducted. $arr = array(10 12 13 16 18 19 20 21 22 23 24 33 35 42 47); $n = sizeof($arr); $x = 47; // Element to be searched $index = interpolationSearch($arr 0 $n - 1 $x); // If element was found if ($index != -1) echo 'Element found at index '.$index; else echo 'Element not found.'; return 0; #This code is contributed by Susobhan Akhuli ?> תְפוּקָה
Element found at index 4
מורכבות זמן: O(log2(עֵץ2n)) למקרה הממוצע ו-O(n) למקרה הגרוע ביותר
מורכבות חלל עזר: O(1)
קבל אורך מערך ב-c
גישה נוספת:
זוהי גישת האיטרציה לחיפוש האינטרפולציה.
- שלב 1: בלולאה חשב את הערך של 'pos' באמצעות נוסחת מיקום הבדיקה.
- שלב 2: אם מדובר בהתאמה החזירו את האינדקס של הפריט וצא.
- שלב 3: אם הפריט קטן מ-arr[pos] חשב את מיקום הבדיקה של תת-מערך השמאלי. אחרת חשב את אותו הדבר במערך המשנה הימני.
- שלב 4: חזור על הפעולה עד שתמצא התאמה או שמערך המשנה יצטמצם לאפס.
להלן יישום האלגוריתם.
C++// C++ program to implement interpolation search by using iteration approach #include using namespace std; int interpolationSearch(int arr[] int n int x) { // Find indexes of two corners int low = 0 high = (n - 1); // Since array is sorted an element present // in array must be in range defined by corner while (low <= high && x >= arr[low] && x <= arr[high]) { if (low == high) {if (arr[low] == x) return low; return -1; } // Probing the position with keeping // uniform distribution in mind. int pos = low + (((double)(high - low) / (arr[high] - arr[low])) * (x - arr[low])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in upper part if (arr[pos] < x) low = pos + 1; // If x is smaller x is in the lower part else high = pos - 1; } return -1; } // Main function int main() { // Array of items on whighch search will // be conducted. int arr[] = {10 12 13 16 18 19 20 21 22 23 24 33 35 42 47}; int n = sizeof(arr)/sizeof(arr[0]); int x = 18; // Element to be searched int index = interpolationSearch(arr n x); // If element was found if (index != -1) cout << 'Element found at index ' << index; else cout << 'Element not found.'; return 0; } //this code contributed by Ajay Singh
Java // Java program to implement interpolation // search with recursion import java.util.*; class GFG { // If x is present in arr[0..n-1] then returns // index of it else returns -1. public static int interpolationSearch(int arr[] int lo int hi int x) { int pos; if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code public static void main(String[] args) { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = arr.length; // Element to be searched int x = 18; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) System.out.println('Element found at index ' + index); else System.out.println('Element not found.'); } }
Python # Python equivalent of above C++ code # Python program to implement interpolation search by using iteration approach def interpolationSearch(arr n x): # Find indexes of two corners low = 0 high = (n - 1) # Since array is sorted an element present # in array must be in range defined by corner while low <= high and x >= arr[low] and x <= arr[high]: if low == high: if arr[low] == x: return low; return -1; # Probing the position with keeping # uniform distribution in mind. pos = int(low + (((float(high - low)/( arr[high] - arr[low])) * (x - arr[low])))) # Condition of target found if arr[pos] == x: return pos # If x is larger x is in upper part if arr[pos] < x: low = pos + 1; # If x is smaller x is in lower part else: high = pos - 1; return -1 # Main function if __name__ == '__main__': # Array of items on whighch search will # be conducted. arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47] n = len(arr) x = 18 # Element to be searched index = interpolationSearch(arr n x) # If element was found if index != -1: print ('Element found at index'index) else: print ('Element not found')
C# // C# program to implement interpolation search by using // iteration approach using System; class Program { // Interpolation Search function static int InterpolationSearch(int[] arr int n int x) { int low = 0; int high = n - 1; while (low <= high && x >= arr[low] && x <= arr[high]) { if (low == high) { if (arr[low] == x) return low; return -1; } int pos = low + (int)(((float)(high - low) / (arr[high] - arr[low])) * (x - arr[low])); if (arr[pos] == x) return pos; if (arr[pos] < x) low = pos + 1; else high = pos - 1; } return -1; } // Main function static void Main(string[] args) { int[] arr = {10 12 13 16 18 19 20 21 22 23 24 33 35 42 47}; int n = arr.Length; int x = 18; int index = InterpolationSearch(arr n x); if (index != -1) Console.WriteLine('Element found at index ' + index); else Console.WriteLine('Element not found'); } } // This code is contributed by Susobhan Akhuli
JavaScript // JavaScript program to implement interpolation search by using iteration approach function interpolationSearch(arr n x) { // Find indexes of two corners let low = 0; let high = n - 1; // Since array is sorted an element present // in array must be in range defined by corner while (low <= high && x >= arr[low] && x <= arr[high]) { if (low == high) { if (arr[low] == x) { return low; } return -1; } // Probing the position with keeping // uniform distribution in mind. let pos = Math.floor(low + (((high - low) / (arr[high] - arr[low])) * (x - arr[low]))); // Condition of target found if (arr[pos] == x) { return pos; } // If x is larger x is in upper part if (arr[pos] < x) { low = pos + 1; } // If x is smaller x is in lower part else { high = pos - 1; } } return -1; } // Main function let arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47]; let n = arr.length; let x = 18; // Element to be searched let index = interpolationSearch(arr n x); // If element was found if (index != -1) { console.log('Element found at index' index); } else { console.log('Element not found'); }
תְפוּקָה
Element found at index 4
מורכבות זמן: O(log2(log2 n)) למקרה הממוצע ו-O(n) למקרה הגרוע ביותר
מורכבות חלל עזר: O(1)