logo

עומס יתר של C++ (פונקציה ואופרטור)

אם ניצור שני איברים או יותר בעלי שם זהה אך שונה במספר או בסוג הפרמטר, הדבר מכונה עומס C++. ב-C++, אנו יכולים להעמיס יתר על המידה:

  • שיטות,
  • בנאים, ו
  • נכסים באינדקס

זה בגלל שלחברים האלה יש פרמטרים בלבד.

סוגי עומס יתר ב-C++ הם:

  • עומס יתר על הפונקציות
  • עומס יתר על המפעיל
עומס יתר של C++

עומס יתר של פונקציות C++

עומס יתר של פונקציות מוגדר כתהליך של שתי פונקציות או יותר עם אותו שם, אך שונה בפרמטרים ידוע בתור עומס יתר של פונקציות ב-C++. בעומס יתר של פונקציות, הפונקציה מוגדרת מחדש על ידי שימוש בסוגים שונים של ארגומנטים או במספר שונה של ארגומנטים. רק באמצעות הבדלים אלה המהדר יכול להבדיל בין הפונקציות.

שינוי שם של ספרייה

ה יתרון עומס יתר של פונקציות הוא שזה מגביר את הקריאות של התוכנית מכיוון שאינך צריך להשתמש בשמות שונים עבור אותה פעולה.

דוגמה להעמסת יתר של פונקציית C++

בוא נראה את הדוגמה הפשוטה של ​​עומס יתר של פונקציות שבה אנחנו משנים את מספר הארגומנטים של שיטת add() .

// תוכנית של עומס יתר של פונקציות כאשר מספר הארגומנטים משתנה.

 #include using namespace std; class Cal { public: static int add(int a,int b){ return a + b; } static int add(int a, int b, int c) { return a + b + c; } }; int main(void) { Cal C; // class object declaration. cout&lt;<c.add(10, 20)<<endl; cout<<c.add(12, 20, 23); return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> 30 55 </pre> <p>Let&apos;s see the simple example when the type of the arguments vary.</p> <p>// Program of function overloading with different types of arguments.</p> <pre> #include using namespace std; int mul(int,int); float mul(float,int); int mul(int a,int b) { return a*b; } float mul(double x, int y) { return x*y; } int main() { int r1 = mul(6,7); float r2 = mul(0.2,3); std::cout &lt;&lt; &apos;r1 is : &apos; &lt;<r1<< std::endl; std::cout <<'r2 is : ' <<r2<< return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> r1 is : 42 r2 is : 0.6 </pre> <h2>Function Overloading and Ambiguity</h2> <p>When the compiler is unable to decide which function is to be invoked among the overloaded function, this situation is known as <strong>function overloading</strong> .</p> <p>When the compiler shows the ambiguity error, the compiler does not run the program.</p> <p> <strong>Causes of Function Overloading:</strong> </p> <ul> <li>Type Conversion.</li> <li>Function with default arguments.</li> <li>Function with pass by reference.</li> </ul> <img src="//techcodeview.com/img/c-tutorial/89/c-overloading-function-2.webp" alt="C++ Overloading"> <ul> <li>Type Conversion:</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(float); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(float j) { std::cout << 'value of j is : ' <<j<< int main() fun(12); fun(1.2); return 0; < pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(double)&apos; is ambiguous</strong> &apos;. The fun(10) will call the first function. The fun(1.2) calls the second function according to our prediction. But, this does not refer to any function as in C++, all the floating point constants are treated as double not as a float. If we replace float to double, the program works. Therefore, this is a type conversion from float to double.</p> <ul> <li>Function with Default Arguments</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(int,int); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(int a,int b="9)" { std::cout << 'value of a is : ' < <a<< <b<< int main() fun(12); return 0; pre> <p>The above example shows an error &apos;call of overloaded &apos;fun(int)&apos; is ambiguous&apos;. The fun(int a, int b=9) can be called in two ways: first is by calling the function with one argument, i.e., fun(12) and another way is calling the function with two arguments, i.e., fun(4,5). The fun(int i) function is invoked with one argument. Therefore, the compiler could not be able to select among fun(int i) and fun(int a,int b=9).</p> <ul> <li>Function with pass by reference</li> </ul> <p>Let&apos;s see a simple example.</p> <pre> #include using namespace std; void fun(int); void fun(int &amp;); int main() { int a=10; fun(a); // error, which f()? return 0; } void fun(int x) { std::cout &lt;&lt; &apos;Value of x is : &apos; &lt;<x<< std::endl; } void fun(int &b) { std::cout << 'value of b is : ' < <b<< pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(int&amp;)&apos; is ambiguous</strong> &apos;. The first function takes one integer argument and the second function takes a reference parameter as an argument. In this case, the compiler does not know which function is needed by the user as there is no syntactical difference between the fun(int) and fun(int &amp;).</p> <h2>C++ Operators Overloading</h2> <p>Operator overloading is a compile-time polymorphism in which the operator is overloaded to provide the special meaning to the user-defined data type. Operator overloading is used to overload or redefines most of the operators available in C++. It is used to perform the operation on the user-defined data type. For example, C++ provides the ability to add the variables of the user-defined data type that is applied to the built-in data types.</p> <p>The advantage of Operators overloading is to perform different operations on the same operand.</p> <p> <strong>Operator that cannot be overloaded are as follows:</strong> </p> <ul> <li>Scope operator (::)</li> <li>Sizeof</li> <li>member selector(.)</li> <li>member pointer selector(*)</li> <li>ternary operator(?:) </li> </ul> <h2>Syntax of Operator Overloading</h2> <pre> return_type class_name : : operator op(argument_list) { // body of the function. } </pre> <p>Where the <strong>return type</strong> is the type of value returned by the function. </p><p> <strong>class_name</strong> is the name of the class.</p> <p> <strong>operator op</strong> is an operator function where op is the operator being overloaded, and the operator is the keyword.</p> <h2>Rules for Operator Overloading</h2> <ul> <li>Existing operators can only be overloaded, but the new operators cannot be overloaded.</li> <li>The overloaded operator contains atleast one operand of the user-defined data type.</li> <li>We cannot use friend function to overload certain operators. However, the member function can be used to overload those operators.</li> <li>When unary operators are overloaded through a member function take no explicit arguments, but, if they are overloaded by a friend function, takes one argument.</li> <li>When binary operators are overloaded through a member function takes one explicit argument, and if they are overloaded through a friend function takes two explicit arguments. </li> </ul> <h2>C++ Operators Overloading Example</h2> <p>Let&apos;s see the simple example of operator overloading in C++. In this example, void operator ++ () operator function is defined (inside Test class).</p> <p>// program to overload the unary operator ++.</p> <pre> #include using namespace std; class Test { private: int num; public: Test(): num(8){} void operator ++() { num = num+2; } void Print() { cout&lt;<'the count is: '<<num; } }; int main() { test tt; ++tt; calling of a function 'void operator ++()' tt.print(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The Count is: 10 </pre> <p>Let&apos;s see a simple example of overloading the binary operators.</p> <p>// program to overload the binary operators.</p> <pre> #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<'the result of the addition two objects is : '<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></'the></pre></'the></pre></x<<></pre></i<<></pre></i<<></pre></r1<<></pre></c.add(10,>

בואו נראה את הדוגמה הפשוטה כאשר סוג הטיעונים משתנה.

// תוכנית של עומס יתר של פונקציות בסוגים שונים של ארגומנטים.

 #include using namespace std; int mul(int,int); float mul(float,int); int mul(int a,int b) { return a*b; } float mul(double x, int y) { return x*y; } int main() { int r1 = mul(6,7); float r2 = mul(0.2,3); std::cout &lt;&lt; &apos;r1 is : &apos; &lt;<r1<< std::endl; std::cout <<\'r2 is : \' <<r2<< return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> r1 is : 42 r2 is : 0.6 </pre> <h2>Function Overloading and Ambiguity</h2> <p>When the compiler is unable to decide which function is to be invoked among the overloaded function, this situation is known as <strong>function overloading</strong> .</p> <p>When the compiler shows the ambiguity error, the compiler does not run the program.</p> <p> <strong>Causes of Function Overloading:</strong> </p> <ul> <li>Type Conversion.</li> <li>Function with default arguments.</li> <li>Function with pass by reference.</li> </ul> <img src="//techcodeview.com/img/c-tutorial/89/c-overloading-function-2.webp" alt="C++ Overloading"> <ul> <li>Type Conversion:</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(float); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(float j) { std::cout << \'value of j is : \' <<j<< int main() fun(12); fun(1.2); return 0; < pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(double)&apos; is ambiguous</strong> &apos;. The fun(10) will call the first function. The fun(1.2) calls the second function according to our prediction. But, this does not refer to any function as in C++, all the floating point constants are treated as double not as a float. If we replace float to double, the program works. Therefore, this is a type conversion from float to double.</p> <ul> <li>Function with Default Arguments</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(int,int); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(int a,int b="9)" { std::cout << \'value of a is : \' < <a<< <b<< int main() fun(12); return 0; pre> <p>The above example shows an error &apos;call of overloaded &apos;fun(int)&apos; is ambiguous&apos;. The fun(int a, int b=9) can be called in two ways: first is by calling the function with one argument, i.e., fun(12) and another way is calling the function with two arguments, i.e., fun(4,5). The fun(int i) function is invoked with one argument. Therefore, the compiler could not be able to select among fun(int i) and fun(int a,int b=9).</p> <ul> <li>Function with pass by reference</li> </ul> <p>Let&apos;s see a simple example.</p> <pre> #include using namespace std; void fun(int); void fun(int &amp;); int main() { int a=10; fun(a); // error, which f()? return 0; } void fun(int x) { std::cout &lt;&lt; &apos;Value of x is : &apos; &lt;<x<< std::endl; } void fun(int &b) { std::cout << \'value of b is : \' < <b<< pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(int&amp;)&apos; is ambiguous</strong> &apos;. The first function takes one integer argument and the second function takes a reference parameter as an argument. In this case, the compiler does not know which function is needed by the user as there is no syntactical difference between the fun(int) and fun(int &amp;).</p> <h2>C++ Operators Overloading</h2> <p>Operator overloading is a compile-time polymorphism in which the operator is overloaded to provide the special meaning to the user-defined data type. Operator overloading is used to overload or redefines most of the operators available in C++. It is used to perform the operation on the user-defined data type. For example, C++ provides the ability to add the variables of the user-defined data type that is applied to the built-in data types.</p> <p>The advantage of Operators overloading is to perform different operations on the same operand.</p> <p> <strong>Operator that cannot be overloaded are as follows:</strong> </p> <ul> <li>Scope operator (::)</li> <li>Sizeof</li> <li>member selector(.)</li> <li>member pointer selector(*)</li> <li>ternary operator(?:) </li> </ul> <h2>Syntax of Operator Overloading</h2> <pre> return_type class_name : : operator op(argument_list) { // body of the function. } </pre> <p>Where the <strong>return type</strong> is the type of value returned by the function. </p><p> <strong>class_name</strong> is the name of the class.</p> <p> <strong>operator op</strong> is an operator function where op is the operator being overloaded, and the operator is the keyword.</p> <h2>Rules for Operator Overloading</h2> <ul> <li>Existing operators can only be overloaded, but the new operators cannot be overloaded.</li> <li>The overloaded operator contains atleast one operand of the user-defined data type.</li> <li>We cannot use friend function to overload certain operators. However, the member function can be used to overload those operators.</li> <li>When unary operators are overloaded through a member function take no explicit arguments, but, if they are overloaded by a friend function, takes one argument.</li> <li>When binary operators are overloaded through a member function takes one explicit argument, and if they are overloaded through a friend function takes two explicit arguments. </li> </ul> <h2>C++ Operators Overloading Example</h2> <p>Let&apos;s see the simple example of operator overloading in C++. In this example, void operator ++ () operator function is defined (inside Test class).</p> <p>// program to overload the unary operator ++.</p> <pre> #include using namespace std; class Test { private: int num; public: Test(): num(8){} void operator ++() { num = num+2; } void Print() { cout&lt;<\'the count is: \'<<num; } }; int main() { test tt; ++tt; calling of a function \'void operator ++()\' tt.print(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The Count is: 10 </pre> <p>Let&apos;s see a simple example of overloading the binary operators.</p> <p>// program to overload the binary operators.</p> <pre> #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<\'the result of the addition two objects is : \'<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></\'the></pre></\'the></pre></x<<></pre></i<<></pre></i<<></pre></r1<<>

עומס יתר של פונקציות ועמימות

כאשר המהדר אינו מסוגל להחליט איזו פונקציה יש להפעיל בין הפונקציה העמוסה, מצב זה ידוע כ עומס יתר של פונקציות .

כאשר המהדר מציג את שגיאת העמימות, המהדר לא מריץ את התוכנית.

גורמים לעומס יתר של פונקציות:

  • סוג המרה.
  • פונקציה עם ארגומנטים של ברירת מחדל.
  • פונקציה עם מעבר על ידי הפניה.
עומס יתר של C++
  • סוג המרה:

בואו נראה דוגמה פשוטה.

 #include using namespace std; void fun(int); void fun(float); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(float j) { std::cout << \'value of j is : \' <<j<< int main() fun(12); fun(1.2); return 0; < pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(double)&apos; is ambiguous</strong> &apos;. The fun(10) will call the first function. The fun(1.2) calls the second function according to our prediction. But, this does not refer to any function as in C++, all the floating point constants are treated as double not as a float. If we replace float to double, the program works. Therefore, this is a type conversion from float to double.</p> <ul> <li>Function with Default Arguments</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(int,int); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(int a,int b="9)" { std::cout << \'value of a is : \' < <a<< <b<< int main() fun(12); return 0; pre> <p>The above example shows an error &apos;call of overloaded &apos;fun(int)&apos; is ambiguous&apos;. The fun(int a, int b=9) can be called in two ways: first is by calling the function with one argument, i.e., fun(12) and another way is calling the function with two arguments, i.e., fun(4,5). The fun(int i) function is invoked with one argument. Therefore, the compiler could not be able to select among fun(int i) and fun(int a,int b=9).</p> <ul> <li>Function with pass by reference</li> </ul> <p>Let&apos;s see a simple example.</p> <pre> #include using namespace std; void fun(int); void fun(int &amp;); int main() { int a=10; fun(a); // error, which f()? return 0; } void fun(int x) { std::cout &lt;&lt; &apos;Value of x is : &apos; &lt;<x<< std::endl; } void fun(int &b) { std::cout << \'value of b is : \' < <b<< pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(int&amp;)&apos; is ambiguous</strong> &apos;. The first function takes one integer argument and the second function takes a reference parameter as an argument. In this case, the compiler does not know which function is needed by the user as there is no syntactical difference between the fun(int) and fun(int &amp;).</p> <h2>C++ Operators Overloading</h2> <p>Operator overloading is a compile-time polymorphism in which the operator is overloaded to provide the special meaning to the user-defined data type. Operator overloading is used to overload or redefines most of the operators available in C++. It is used to perform the operation on the user-defined data type. For example, C++ provides the ability to add the variables of the user-defined data type that is applied to the built-in data types.</p> <p>The advantage of Operators overloading is to perform different operations on the same operand.</p> <p> <strong>Operator that cannot be overloaded are as follows:</strong> </p> <ul> <li>Scope operator (::)</li> <li>Sizeof</li> <li>member selector(.)</li> <li>member pointer selector(*)</li> <li>ternary operator(?:) </li> </ul> <h2>Syntax of Operator Overloading</h2> <pre> return_type class_name : : operator op(argument_list) { // body of the function. } </pre> <p>Where the <strong>return type</strong> is the type of value returned by the function. </p><p> <strong>class_name</strong> is the name of the class.</p> <p> <strong>operator op</strong> is an operator function where op is the operator being overloaded, and the operator is the keyword.</p> <h2>Rules for Operator Overloading</h2> <ul> <li>Existing operators can only be overloaded, but the new operators cannot be overloaded.</li> <li>The overloaded operator contains atleast one operand of the user-defined data type.</li> <li>We cannot use friend function to overload certain operators. However, the member function can be used to overload those operators.</li> <li>When unary operators are overloaded through a member function take no explicit arguments, but, if they are overloaded by a friend function, takes one argument.</li> <li>When binary operators are overloaded through a member function takes one explicit argument, and if they are overloaded through a friend function takes two explicit arguments. </li> </ul> <h2>C++ Operators Overloading Example</h2> <p>Let&apos;s see the simple example of operator overloading in C++. In this example, void operator ++ () operator function is defined (inside Test class).</p> <p>// program to overload the unary operator ++.</p> <pre> #include using namespace std; class Test { private: int num; public: Test(): num(8){} void operator ++() { num = num+2; } void Print() { cout&lt;<\'the count is: \'<<num; } }; int main() { test tt; ++tt; calling of a function \'void operator ++()\' tt.print(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The Count is: 10 </pre> <p>Let&apos;s see a simple example of overloading the binary operators.</p> <p>// program to overload the binary operators.</p> <pre> #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<\'the result of the addition two objects is : \'<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></\'the></pre></\'the></pre></x<<></pre></i<<></pre></i<<>

איפה ה סוג החזרה הוא סוג הערך המוחזר על ידי הפונקציה.

class_name זה שם הכיתה.

מפעיל אופ היא פונקציית אופרטור שבה op הוא האופרטור שעומס יתר על המידה, והאופרטור הוא מילת המפתח.

כללים לעומס יתר על ידי המפעיל

  • ניתן להעמיס רק על אופרטורים קיימים, אך לא ניתן להעמיס על האופרטורים החדשים.
  • האופרטור העמוס מכיל לפחות אופרנד אחד מסוג הנתונים המוגדר על ידי המשתמש.
  • אנחנו לא יכולים להשתמש בפונקציית חבר כדי להעמיס על אופרטורים מסוימים. עם זאת, ניתן להשתמש בפונקציית החבר כדי להעמיס על אותם אופרטורים.
  • כאשר עומסים על אופרטורים לא-נאריים דרך פונקציית חבר, אין לקחת ארגומנטים מפורשים, אבל אם הם מועמסים על ידי פונקציית חבר, לוקח ארגומנט אחד.
  • כאשר עומסים על אופרטורים בינאריים דרך פונקציית איבר לוקחת ארגומנט אחד מפורש, ואם הם עומסים דרך פונקציית חבר לוקחים שני ארגומנטים מפורשים.

דוגמה לעומס יתר של מפעילי C++

בואו נראה את הדוגמה הפשוטה של ​​עומס יתר של אופרטורים ב-C++. בדוגמה זו, מוגדרת פונקציית האופרטור void ++ () (בתוך מחלקת Test).

// תוכנית להעמיס על האופרטור האנרי ++.

 #include using namespace std; class Test { private: int num; public: Test(): num(8){} void operator ++() { num = num+2; } void Print() { cout&lt;<\\'the count is: \\'<<num; } }; int main() { test tt; ++tt; calling of a function \\'void operator ++()\\' tt.print(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The Count is: 10 </pre> <p>Let&apos;s see a simple example of overloading the binary operators.</p> <p>// program to overload the binary operators.</p> <pre> #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<\\'the result of the addition two objects is : \\'<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></\\'the></pre></\\'the>

בואו נראה דוגמה פשוטה לעומס יתר על האופרטורים הבינאריים.

// תוכנית להעמיס על האופרטורים הבינאריים.

 #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<\\'the result of the addition two objects is : \\'<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></\\'the>